-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclf.py
219 lines (184 loc) · 7.51 KB
/
clf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import argparse
import pandas as pd
import pickle
from tqdm import tqdm
from util import *
import torch
from torch import nn
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from dataset import *
from model.base import get_model
from opt import *
from scheduler.base import get_sche
from scheduler.lars_warmup import adjust_learning_rate
def main(args: argparse):
# Setup folder
args.log_dir = folder_setup(args=args)
check_exp_exist(args=args)
# Setup Multi GPU Training
args.ngpus = torch.cuda.device_count()
args.rank = 0
args.dist_url = f'tcp://localhost:{args.port}'
args.world_size = args.ngpus
mp.spawn(main_worker, (args,), args.ngpus)
def main_worker(gpu, args):
args.rank += gpu
dist.init_process_group(
backend='nccl', init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
if args.rank == 0:
log = {
"train_loss" : [],
"train_acc" : [],
"test_loss" : [],
"test_acc" : []
}
log_path = args.log_dir + f"/{args.bs}_{args.lr}_{args.sd}.parquet"
torch.cuda.set_device(gpu)
torch.backends.cudnn.benchmark = True
# Data Loader
num_classes, train_dataset, test_dataset = get_dataset(args=args)
assert args.bs % args.world_size == 0
train_sampler = DistributedSampler(train_dataset) if args.opt != 'khlars' else None
test_sampler = DistributedSampler(test_dataset) if args.opt != 'khlars' else None
per_device_batch_size = args.bs // args.world_size
train_loader = DataLoader(
dataset=train_dataset, batch_size=per_device_batch_size, num_workers=args.workers, pin_memory=True, sampler=train_sampler
)
test_loader = DataLoader(
dataset=test_dataset, batch_size=per_device_batch_size, num_workers=args.workers, pin_memory=True, sampler=test_sampler
)
# Model
model = get_model(model=args.model, num_classes=num_classes, winit = args.winit).cuda(gpu)
if args.sd == "lars-warm":
param_weights = []
param_biases = []
for param in model.parameters():
if param.ndim == 1:
param_biases.append(param)
else:
param_weights.append(param)
parameters = [{'params': param_weights}, {'params': param_biases}]
model = DDP(model, device_ids=[gpu])
# Optimizer
if args.opt not in ['lars', 'tvlars', 'khlars', 'lamb', 'clars']:
optimizer = get_opt(
opt_name=args.opt,
params=model.parameters(),
learning_rate=args.lr,
weight_decay=args.wd
)
elif args.opt == 'lars':
optimizer = LARS(
params=parameters if args.sd == "lars-warm" else model.parameters(),
weight_decay=args.wd,
lr=args.lr,
weight_decay_filter=True,
lars_adaptation_filter=True
)
elif args.opt == 'tvlars':
optimizer = TVLARS(
params=model.parameters(),
weight_decay=args.wd,
lmbda=args.lmbda,
lr=args.lr,
weight_decay_filter=True,
lars_adaptation_filter=True,
)
elif args.opt == 'lamb':
optimizer = LAMB(
params=parameters if args.sd == "lars-warm" else model.parameters(),
lr = args.lr,
weight_decay=args.wd,
adam=False
)
# Learning Scheduler / Warm Up
if args.sd == 'lars-warm':
pass
elif args.sd == 'cosine':
scheduler = get_sche(
sche_name=args.sd,
optimizer=optimizer,
T_max=args.epochs
)
# Loss Function
criterion = nn.CrossEntropyLoss()
# Training and Evaluation
for epoch in range(args.epochs):
model.train()
if args.opt != 'khlars':
train_sampler.set_epoch(epoch)
train_loss = 0
correct = 0
total = 0
batch_count = 0
for step, (train_img, train_label) in tqdm(enumerate(train_loader, start=epoch * len(train_loader))):
if args.sd == 'lars-warm':
adjust_learning_rate(args, optimizer, train_loader, step)
batch_count = step
train_img = train_img.cuda(gpu, non_blocking=True)
train_label = train_label.cuda(gpu, non_blocking=True)
logits = model(train_img)
loss = criterion(logits, train_label)
optimizer.zero_grad()
loss.backward(
retain_graph = True if args.opt == 'khlars' else False,
create_graph = True if args.opt == 'khlars' else False
)
if args.opt == 'tvlars':
optimizer.step(unit_step_cnt = len(train_loader), epoch_delay_cnt = 10)
else:
optimizer.step()
if args.sd == 'cosine':
scheduler.step()
if args.rank == 0:
train_loss += loss.item()
_, predicted = logits.max(1)
total += train_label.size(0)
correct += predicted.eq(train_label).sum().item()
if args.rank == 0:
log["train_loss"].append(train_loss/(batch_count+1))
log["train_acc"].append(100.*correct/total)
if args.opt != 'khlars':
test_sampler.set_epoch(epoch)
model.eval()
with torch.no_grad():
test_loss = 0
correct = 0
total = 0
batch_count = 0
for step, (val_img, val_label) in tqdm(enumerate(test_loader)):
batch_count = step
val_img = val_img.cuda(gpu, non_blocking=True)
val_label = val_label.cuda(gpu, non_blocking=True)
logits = model(val_img)
loss = criterion(logits, val_label)
test_loss += loss.item()
_, predicted = logits.max(1)
total += val_label.size(0)
correct += predicted.eq(val_label).sum().item()
log["test_loss"].append(test_loss/(batch_count+1))
log["test_acc"].append(100.*correct/total)
print(f"Epoch: {epoch} - " + " - ".join([f"{key}: {log[key][epoch]}" for key in log]))
if args.rank == 0:
log_df = pd.DataFrame(log)
log_df.to_parquet(log_path)
if args.opt in ['lars', 'tvlars', 'lamb']:
ratio_log = optimizer.ratio_log
weight_log = optimizer.weight_log
gradient_log = optimizer.gradient_log
ratio_log_path = args.log_dir + f"/ratio_{args.bs}_{args.lr}_{args.sd}.pickle"
weight_log_path = args.log_dir + f"/weight_{args.bs}_{args.lr}_{args.sd}.pickle"
gradient_log_path = args.log_dir + f"/gradient_{args.bs}_{args.lr}_{args.sd}.pickle"
with open(ratio_log_path, 'wb') as handle:
pickle.dump(ratio_log, handle)
with open(weight_log_path, 'wb') as handle:
pickle.dump(weight_log, handle)
with open(gradient_log_path, 'wb') as handle:
pickle.dump(gradient_log, handle)
dist.destroy_process_group()