-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsocial_distance.py
138 lines (110 loc) · 5.47 KB
/
social_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
### REFERENCES
### https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/
### https://docs.opencv.org/4.3.0/d6/d0f/group__dnn.html
### https://www.ebenezertechs.com/mobilenet-ssd-using-opencv-3-4-1-deep-learning-module-python/
### https://www.pyimagesearch.com/2020/06/01/opencv-social-distancing-detector/
import cv2
import numpy as np
from math import pow, sqrt
#Constant Values
preprocessing = False
calculateConstant_x = 300
calculateConstant_y = 615
personLabelID = 15.00
debug = True
accuracyThreshold = 0.4
RED = (0,0,255)
YELLOW = (0,255,255)
GREEN = (0,255,0)
write_video = False
# I used CLAHE preprocessing algorithm for detect humans better.
# HSV (Hue, Saturation, and Value channel). CLAHE uses value channel.
# Value channel refers to the lightness or darkness of a colour. An image without hue or saturation is a grayscale image.
def CLAHE(bgr_image: np.array) -> np.array:
hsv = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2HSV)
hsv_planes = cv2.split(hsv)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
hsv_planes[2] = clahe.apply(hsv_planes[2])
hsv = cv2.merge(hsv_planes)
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
def centroid(startX,endX,startY,endY):
centroid_x = round((startX+endX)/2,4)
centroid_y = round((startY+endY)/2,4)
bboxHeight = round(endY-startY,4)
return centroid_x,centroid_y,bboxHeight
def calcDistance(bboxHeight):
distance = (calculateConstant_x * calculateConstant_y) / bboxHeight
return distance
def drawResult(frame,position):
for i in position.keys():
if i in highRisk:
rectangleColor = RED
elif i in mediumRisk:
rectangleColor = YELLOW
else:
rectangleColor = GREEN
(startX, startY, endX, endY) = detectionCoordinates[i]
cv2.rectangle(frame, (startX, startY), (endX, endY), rectangleColor, 2)
if __name__== "__main__":
caffeNetwork = cv2.dnn.readNetFromCaffe("./SSD_MobileNet_prototxt.txt", "./SSD_MobileNet.caffemodel")
cap = cv2.VideoCapture("./pedestrians.mp4")
fourcc = cv2.VideoWriter_fourcc(*"XVID")
output_movie = cv2.VideoWriter("./result.avi", fourcc, 24, (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
while cap.isOpened():
debug_frame, frame = cap.read()
highRisk = set()
mediumRisk = set()
position = dict()
detectionCoordinates = dict()
if not debug_frame:
print("Video cannot opened or finished!")
break
if preprocessing:
frame = CLAHE(frame)
(imageHeight, imageWidth) = frame.shape[:2]
pDetection = cv2.dnn.blobFromImage(cv2.resize(frame, (imageWidth, imageHeight)), 0.007843, (imageWidth, imageHeight), 127.5)
caffeNetwork.setInput(pDetection)
detections = caffeNetwork.forward()
for i in range(detections.shape[2]):
accuracy = detections[0, 0, i, 2]
if accuracy > accuracyThreshold:
# Detection class and detection box coordinates.
idOfClasses = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([imageWidth, imageHeight, imageWidth, imageHeight])
(startX, startY, endX, endY) = box.astype('int')
if idOfClasses == personLabelID:
# Default drawing bounding box.
bboxDefaultColor = (255,255,255)
cv2.rectangle(frame, (startX, startY), (endX, endY), bboxDefaultColor, 2)
detectionCoordinates[i] = (startX, startY, endX, endY)
# Centroid of bounding boxes
centroid_x, centroid_y, bboxHeight = centroid(startX,endX,startY,endY)
distance = calcDistance(bboxHeight)
# Centroid in centimeter distance
centroid_x_centimeters = (centroid_x * distance) / calculateConstant_y
centroid_y_centimeters = (centroid_y * distance) / calculateConstant_y
position[i] = (centroid_x_centimeters, centroid_y_centimeters, distance)
#Risk Counter Using Distance of Positions
for i in position.keys():
for j in position.keys():
if i < j:
distanceOfBboxes = sqrt(pow(position[i][0]-position[j][0],2)
+ pow(position[i][1]-position[j][1],2)
+ pow(position[i][2]-position[j][2],2)
)
if distanceOfBboxes < 150: # 150cm or lower
highRisk.add(i),highRisk.add(j)
elif distanceOfBboxes < 200 > 150: # between 150 and 200
mediumRisk.add(i),mediumRisk.add(j)
cv2.putText(frame, "Person in High Risk : " + str(len(highRisk)) , (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
cv2.putText(frame, "Person in Medium Risk : " + str(len(mediumRisk)) , (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 2)
cv2.putText(frame, "Detected Person : " + str(len(detectionCoordinates)), (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
drawResult(frame, position)
if write_video:
output_movie.write(frame)
cv2.imshow('Result', frame)
waitkey = cv2.waitKey(1)
if waitkey == ord("q"):
break
cap.release()
cv2.destroyAllWindows()