-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmapper.py
350 lines (327 loc) · 21.1 KB
/
mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from mapping_utils.geometry import *
from mapping_utils.preprocess import *
from mapping_utils.projection import *
from mapping_utils.transform import *
from mapping_utils.path_planning import *
from cv_utils.image_percevior import GLEE_Percevior
from matplotlib import colormaps
from habitat_sim.utils.common import d3_40_colors_rgb
from constants import *
import open3d as o3d
from lavis.models import load_model_and_preprocess
from PIL import Image
class Instruct_Mapper:
def __init__(self,
camera_intrinsic,
pcd_resolution=0.05,
grid_resolution=0.1,
grid_size=5,
floor_height=-0.8,
ceiling_height=0.8,
translation_func=habitat_translation,
rotation_func=habitat_rotation,
rotate_axis=[0,1,0],
device='cuda:0'):
self.device = device
self.camera_intrinsic = camera_intrinsic
self.pcd_resolution = pcd_resolution
self.grid_resolution = grid_resolution
self.grid_size = grid_size
self.floor_height = floor_height
self.ceiling_height = ceiling_height
self.translation_func = translation_func
self.rotation_func = rotation_func
self.rotate_axis = np.array(rotate_axis)
self.object_percevior = GLEE_Percevior(device=device)
self.pcd_device = o3d.core.Device(device.upper())
def reset(self,position,rotation):
self.update_iterations = 0
self.initial_position = self.translation_func(position)
self.current_position = self.translation_func(position) - self.initial_position
self.current_rotation = self.rotation_func(rotation)
self.scene_pcd = o3d.t.geometry.PointCloud(self.pcd_device)
self.navigable_pcd = o3d.t.geometry.PointCloud(self.pcd_device)
self.object_pcd = o3d.t.geometry.PointCloud(self.pcd_device)
self.object_entities = []
self.trajectory_position = []
def update(self,rgb,depth,position,rotation):
self.current_position = self.translation_func(position) - self.initial_position
self.current_rotation = self.rotation_func(rotation)
self.current_depth = preprocess_depth(depth)
self.current_rgb = preprocess_image(rgb)
self.trajectory_position.append(self.current_position)
# to avoid there is no valid depth value (especially in real-world)
if np.sum(self.current_depth) > 0:
camera_points,camera_colors = get_pointcloud_from_depth(self.current_rgb,self.current_depth,self.camera_intrinsic)
world_points = translate_to_world(camera_points,self.current_position,self.current_rotation)
self.current_pcd = gpu_pointcloud_from_array(world_points,camera_colors,self.pcd_device).voxel_down_sample(self.pcd_resolution)
else:
return
# semantic masking and project object mask to pointcloud
classes,masks,confidences,visualization = self.object_percevior.perceive(self.current_rgb)
self.segmentation = visualization[0]
current_object_entities = self.get_object_entities(self.current_depth,classes,masks,confidences)
self.object_entities = self.associate_object_entities(self.object_entities,current_object_entities)
self.object_pcd = self.update_object_pcd()
# pointcloud update
self.scene_pcd = gpu_merge_pointcloud(self.current_pcd,self.scene_pcd).voxel_down_sample(self.pcd_resolution)
self.scene_pcd = self.scene_pcd.select_by_index((self.scene_pcd.point.positions[:,2]>self.floor_height-0.2).nonzero()[0])
self.useful_pcd = self.scene_pcd.select_by_index((self.scene_pcd.point.positions[:,2]<self.ceiling_height).nonzero()[0])
# all the stairs will be regarded as navigable
for entity in current_object_entities:
if entity['class'] == 'stairs':
self.navigable_pcd = gpu_merge_pointcloud(self.navigable_pcd,entity['pcd'])
# geometry
current_navigable_point = self.current_pcd.select_by_index((self.current_pcd.point.positions[:,2]<self.floor_height).nonzero()[0])
current_navigable_position = current_navigable_point.point.positions.cpu().numpy()
standing_position = np.array([self.current_position[0],self.current_position[1],current_navigable_position[:,2].mean()])
interpolate_points = np.linspace(np.ones_like(current_navigable_position)*standing_position,current_navigable_position,25).reshape(-1,3)
interpolate_points = interpolate_points[(interpolate_points[:,2] > self.floor_height-0.2) & (interpolate_points[:,2] < self.floor_height+0.2)]
interpolate_colors = np.ones_like(interpolate_points) * 100
try:
current_navigable_pcd = gpu_pointcloud_from_array(interpolate_points,interpolate_colors,self.pcd_device).voxel_down_sample(self.grid_resolution)
self.navigable_pcd = gpu_merge_pointcloud(self.navigable_pcd,current_navigable_pcd).voxel_down_sample(self.pcd_resolution)
except:
self.navigable_pcd = self.useful_pcd.select_by_index((self.useful_pcd.point.positions[:,2]<self.floor_height).nonzero()[0])
# try:
# self.navigable_pcd = self.navigable_pcd.voxel_down_sample(self.pcd_resolution)
# except:
# self.navigable_pcd = self.useful_pcd.select_by_index((self.useful_pcd.point.positions[:,2]<self.floor_height).nonzero()[0])
#print("Warning: hello world")
# self.navigable_pcd = self.useful_pcd.select_by_index((self.useful_pcd.point.positions[:,2]<self.floor_height).nonzero()[0])
# filter the obstacle pointcloud
self.obstacle_pcd = self.useful_pcd.select_by_index((self.useful_pcd.point.positions[:,2]>self.floor_height+0.1).nonzero()[0])
self.trajectory_pcd = gpu_pointcloud_from_array(np.array(self.trajectory_position),np.zeros((len(self.trajectory_position),3)),self.pcd_device)
self.frontier_pcd = project_frontier(self.obstacle_pcd,self.navigable_pcd,self.floor_height+0.2,self.grid_resolution)
self.frontier_pcd[:,2] = self.navigable_pcd.point.positions.cpu().numpy()[:,2].mean()
self.frontier_pcd = gpu_pointcloud_from_array(self.frontier_pcd,np.ones((self.frontier_pcd.shape[0],3))*np.array([[255,0,0]]),self.pcd_device)
self.update_iterations += 1
def update_object_pcd(self):
object_pcd = o3d.geometry.PointCloud()
for entity in self.object_entities:
points = entity['pcd'].point.positions.cpu().numpy()
colors = entity['pcd'].point.colors.cpu().numpy()
new_pcd = o3d.geometry.PointCloud()
new_pcd.points = o3d.utility.Vector3dVector(points)
new_pcd.colors = o3d.utility.Vector3dVector(colors)
object_pcd = object_pcd + new_pcd
try:
return gpu_pointcloud(object_pcd,self.pcd_device)
except:
return self.scene_pcd
def get_view_pointcloud(self,rgb,depth,translation,rotation):
current_position = self.translation_func(translation) - self.initial_position
current_rotation = self.rotation_func(rotation)
current_depth = preprocess_depth(depth)
current_rgb = preprocess_image(rgb)
camera_points,camera_colors = get_pointcloud_from_depth(current_rgb,current_depth,self.camera_intrinsic)
world_points = translate_to_world(camera_points,current_position,current_rotation)
current_pcd = gpu_pointcloud_from_array(world_points,camera_colors,self.pcd_device).voxel_down_sample(self.pcd_resolution)
return current_pcd
def get_object_entities(self,depth,classes,masks,confidences):
entities = []
exist_objects = np.unique([ent['class'] for ent in self.object_entities]).tolist()
for cls,mask,score in zip(classes,masks,confidences):
if depth[mask>0].min() < 1.0 and score < 0.5:
continue
if cls not in exist_objects:
exist_objects.append(cls)
camera_points = get_pointcloud_from_depth_mask(depth,mask,self.camera_intrinsic)
world_points = translate_to_world(camera_points,self.current_position,self.current_rotation)
point_colors = np.array([d3_40_colors_rgb[exist_objects.index(cls)%40]]*world_points.shape[0])
if world_points.shape[0] < 10:
continue
object_pcd = gpu_pointcloud_from_array(world_points,point_colors,self.pcd_device).voxel_down_sample(self.pcd_resolution)
object_pcd = gpu_cluster_filter(object_pcd)
if object_pcd.point.positions.shape[0] < 10:
continue
entity = {'class':cls,'pcd':object_pcd,'confidence':score}
entities.append(entity)
return entities
def associate_object_entities(self,ref_entities,eval_entities):
for entity in eval_entities:
if len(ref_entities) == 0:
ref_entities.append(entity)
continue
overlap_score = []
eval_pcd = entity['pcd']
for ref_entity in ref_entities:
if eval_pcd.point.positions.shape[0] == 0:
break
cdist = pointcloud_distance(eval_pcd,ref_entity['pcd'])
overlap_condition = (cdist < 0.1)
nonoverlap_condition = overlap_condition.logical_not()
eval_pcd = eval_pcd.select_by_index(o3d.core.Tensor(nonoverlap_condition.cpu().numpy(),device=self.pcd_device).nonzero()[0])
overlap_score.append((overlap_condition.sum()/(overlap_condition.shape[0]+1e-6)).cpu().numpy())
max_overlap_score = np.max(overlap_score)
arg_overlap_index = np.argmax(overlap_score)
if max_overlap_score < 0.25:
entity['pcd'] = eval_pcd
ref_entities.append(entity)
else:
argmax_entity = ref_entities[arg_overlap_index]
argmax_entity['pcd'] = gpu_merge_pointcloud(argmax_entity['pcd'],eval_pcd)
if argmax_entity['pcd'].point.positions.shape[0] < entity['pcd'].point.positions.shape[0] or entity['class'] in INTEREST_OBJECTS:
argmax_entity['class'] = entity['class']
ref_entities[arg_overlap_index] = argmax_entity
return ref_entities
def get_obstacle_affordance(self):
try:
distance = pointcloud_distance(self.navigable_pcd,self.obstacle_pcd)
affordance = (distance - distance.min())/(distance.max() - distance.min() + 1e-6)
affordance[distance < 0.25] = 0
return affordance.cpu().numpy()
except:
return np.zeros((self.navigable_pcd.point.positions.shape[0],),dtype=np.float32)
def get_trajectory_affordance(self):
try:
distance = pointcloud_distance(self.navigable_pcd,self.trajectory_pcd)
affordance = (distance - distance.min()) / (distance.max() - distance.min() + 1e-6)
return affordance.cpu().numpy()
except:
return np.zeros((self.navigable_pcd.point.positions.shape[0],),dtype=np.float32)
def get_semantic_affordance(self,target_class,threshold=0.1):
semantic_pointcloud = o3d.t.geometry.PointCloud()
for entity in self.object_entities:
if entity['class'] in target_class:
semantic_pointcloud = gpu_merge_pointcloud(semantic_pointcloud,entity['pcd'])
try:
distance = pointcloud_2d_distance(self.navigable_pcd,semantic_pointcloud)
affordance = 1 - (distance - distance.min()) / (distance.max() - distance.min() + 1e-6)
affordance[distance > threshold] = 0
affordance = affordance.cpu().numpy()
return affordance
except:
return np.zeros((self.navigable_pcd.point.positions.shape[0],),dtype=np.float32)
def get_gpt4v_affordance(self,gpt4v_pcd):
try:
distance = pointcloud_distance(self.navigable_pcd,gpt4v_pcd)
affordance = 1 - (distance - distance.min()) / (distance.max() - distance.min() + 1e-6)
affordance[distance > 0.1] = 0
return affordance.cpu().numpy()
except:
return np.zeros((self.navigable_pcd.point.positions.shape[0],),dtype=np.float32)
def get_action_affordance(self,action):
try:
if action == 'Explore':
distance = pointcloud_2d_distance(self.navigable_pcd,self.frontier_pcd)
affordance = 1 - (distance - distance.min()) / (distance.max() - distance.min() + 1e-6)
affordance[distance > 0.2] = 0
return affordance.cpu().numpy()
elif action == 'Move_Forward':
pixel_x,pixel_z,depth_values = project_to_camera(self.navigable_pcd,self.camera_intrinsic,self.current_position,self.current_rotation)
filter_condition = (pixel_x >= 0) & (pixel_x < self.camera_intrinsic[0][2]*2) & (pixel_z >= 0) & (pixel_z < self.camera_intrinsic[1][2]*2) & (depth_values > 1.5) & (depth_values < 2.5)
filter_pcd = self.navigable_pcd.select_by_index(o3d.core.Tensor(np.where(filter_condition==1)[0],device=self.navigable_pcd.device))
distance = pointcloud_distance(self.navigable_pcd,filter_pcd)
affordance = 1 - (distance - distance.min()) / (distance.max() - distance.min() + 1e-6)
affordance[distance > 0.1] = 0
return affordance.cpu().numpy()
elif action == 'Turn_Around':
R = np.array([np.pi,np.pi,np.pi]) * self.rotate_axis
turn_extrinsic = np.matmul(self.current_rotation,quaternion.as_rotation_matrix(quaternion.from_euler_angles(R)))
pixel_x,pixel_z,depth_values = project_to_camera(self.navigable_pcd,self.camera_intrinsic,self.current_position,turn_extrinsic)
filter_condition = (pixel_x >= 0) & (pixel_x < self.camera_intrinsic[0][2]*2) & (pixel_z >= 0) & (pixel_z < self.camera_intrinsic[1][2]*2) & (depth_values > 1.5) & (depth_values < 2.5)
filter_pcd = self.navigable_pcd.select_by_index(o3d.core.Tensor(np.where(filter_condition==1)[0],device=self.navigable_pcd.device))
distance = pointcloud_distance(self.navigable_pcd,filter_pcd)
affordance = 1 - (distance - distance.min()) / (distance.max() - distance.min() + 1e-6)
affordance[distance > 0.1] = 0
return affordance.cpu().numpy()
elif action == 'Turn_Left':
R = np.array([np.pi/2,np.pi/2,np.pi/2]) * self.rotate_axis
turn_extrinsic = np.matmul(self.current_rotation,quaternion.as_rotation_matrix(quaternion.from_euler_angles(R)))
pixel_x,pixel_z,depth_values = project_to_camera(self.navigable_pcd,self.camera_intrinsic,self.current_position,turn_extrinsic)
filter_condition = (pixel_x >= 0) & (pixel_x < self.camera_intrinsic[0][2]*2) & (pixel_z >= 0) & (pixel_z < self.camera_intrinsic[1][2]*2) & (depth_values > 1.5) & (depth_values < 2.5)
filter_pcd = self.navigable_pcd.select_by_index(o3d.core.Tensor(np.where(filter_condition==1)[0],device=self.navigable_pcd.device))
distance = pointcloud_distance(self.navigable_pcd,filter_pcd)
affordance = 1 - (distance - distance.min()) / (distance.max() - distance.min() + 1e-6)
affordance[distance > 0.1] = 0
return affordance.cpu().numpy()
elif action == 'Turn_Right':
R = np.array([-np.pi/2,-np.pi/2,-np.pi/2]) * self.rotate_axis
turn_extrinsic = np.matmul(self.current_rotation,quaternion.as_rotation_matrix(quaternion.from_euler_angles(R)))
pixel_x,pixel_z,depth_values = project_to_camera(self.navigable_pcd,self.camera_intrinsic,self.current_position,turn_extrinsic)
filter_condition = (pixel_x >= 0) & (pixel_x < self.camera_intrinsic[0][2]*2) & (pixel_z >= 0) & (pixel_z < self.camera_intrinsic[1][2]*2) & (depth_values > 1.5) & (depth_values < 2.5)
filter_pcd = self.navigable_pcd.select_by_index(o3d.core.Tensor(np.where(filter_condition==1)[0],device=self.navigable_pcd.device))
distance = pointcloud_distance(self.navigable_pcd,filter_pcd)
affordance = 1 - (distance - distance.min()) / (distance.max() - distance.min() + 1e-6)
affordance[distance > 0.1] = 0
return affordance.cpu().numpy()
elif action == 'Enter':
return self.get_semantic_affordance(['doorway','door','entrance','exit'])
elif action == 'Exit':
return self.get_semantic_affordance(['doorway','door','entrance','exit'])
else:
return np.zeros((self.navigable_pcd.point.positions.shape[0],),dtype=np.float32)
except:
return np.zeros((self.navigable_pcd.point.positions.shape[0],),dtype=np.float32)
def get_objnav_affordance_map(self,action,target_class,gpt4v_pcd,complete_flag=False,failure_mode=False):
if failure_mode:
obstacle_affordance = self.get_obstacle_affordance()
affordance = self.get_action_affordance('Explore')
affordance = np.clip(affordance,0.1,1.0)
affordance[obstacle_affordance == 0] = 0
return affordance,self.visualize_affordance(affordance)
elif complete_flag:
affordance = self.get_semantic_affordance([target_class],threshold=0.1)
return affordance,self.visualize_affordance(affordance)
else:
obstacle_affordance = self.get_obstacle_affordance()
semantic_affordance = self.get_semantic_affordance([target_class],threshold=1.5)
action_affordance = self.get_action_affordance(action)
gpt4v_affordance = self.get_gpt4v_affordance(gpt4v_pcd)
history_affordance = self.get_trajectory_affordance()
affordance = 0.25*semantic_affordance + 0.25*action_affordance + 0.25*gpt4v_affordance + 0.25*history_affordance
affordance = np.clip(affordance,0.1,1.0)
affordance[obstacle_affordance == 0] = 0
return affordance,self.visualize_affordance(affordance/(affordance.max()+1e-6))
def get_debug_affordance_map(self,action,target_class,gpt4v_pcd):
obstacle_affordance = self.get_obstacle_affordance()
semantic_affordance = self.get_semantic_affordance([target_class],threshold=1.5)
action_affordance = self.get_action_affordance(action)
gpt4v_affordance = self.get_gpt4v_affordance(gpt4v_pcd)
history_affordance = self.get_trajectory_affordance()
return self.visualize_affordance(semantic_affordance/(semantic_affordance.max()+1e-6)),\
self.visualize_affordance(history_affordance/(history_affordance.max()+1e-6)),\
self.visualize_affordance(action_affordance/(action_affordance.max()+1e-6)),\
self.visualize_affordance(gpt4v_affordance/(gpt4v_affordance.max()+1e-6)),\
self.visualize_affordance(obstacle_affordance/(obstacle_affordance.max()+1e-6))
def visualize_affordance(self,affordance):
cmap = colormaps.get('jet')
color_affordance = cmap(affordance)[:,0:3]
color_affordance = cpu_pointcloud_from_array(self.navigable_pcd.point.positions.cpu().numpy(),color_affordance)
return color_affordance
def get_appeared_objects(self):
return [entity['class'] for entity in self.object_entities]
def save_pointcloud_debug(self,path="./"):
save_pcd = o3d.geometry.PointCloud()
try:
assert self.useful_pcd.point.positions.shape[0] > 0
save_pcd.points = o3d.utility.Vector3dVector(self.useful_pcd.point.positions.cpu().numpy())
save_pcd.colors = o3d.utility.Vector3dVector(self.useful_pcd.point.colors.cpu().numpy())
o3d.io.write_point_cloud(path + "scene.ply",save_pcd)
except:
pass
try:
assert self.navigable_pcd.point.positions.shape[0] > 0
save_pcd.points = o3d.utility.Vector3dVector(self.navigable_pcd.point.positions.cpu().numpy())
save_pcd.colors = o3d.utility.Vector3dVector(self.navigable_pcd.point.colors.cpu().numpy())
o3d.io.write_point_cloud(path + "navigable.ply",save_pcd)
except:
pass
try:
assert self.obstacle_pcd.point.positions.shape[0] > 0
save_pcd.points = o3d.utility.Vector3dVector(self.obstacle_pcd.point.positions.cpu().numpy())
save_pcd.colors = o3d.utility.Vector3dVector(self.obstacle_pcd.point.colors.cpu().numpy())
o3d.io.write_point_cloud(path + "obstacle.ply",save_pcd)
except:
pass
object_pcd = o3d.geometry.PointCloud()
for entity in self.object_entities:
points = entity['pcd'].point.positions.cpu().numpy()
colors = entity['pcd'].point.colors.cpu().numpy()
new_pcd = o3d.geometry.PointCloud()
new_pcd.points = o3d.utility.Vector3dVector(points)
new_pcd.colors = o3d.utility.Vector3dVector(colors)
object_pcd = object_pcd + new_pcd
if len(object_pcd.points) > 0:
o3d.io.write_point_cloud(path + "object.ply",object_pcd)