-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmixmatch_finetune.py
252 lines (237 loc) · 9.38 KB
/
mixmatch_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
import os
import shutil
import numpy as np
import torch
from data.dataset import MixMatchDataset, PoisonLabelDataset
from data.utils import (
gen_poison_idx,
get_bd_transform,
get_dataset,
get_loader,
get_semi_idx,
get_transform,
)
from model.model import LinearModel, SelfModel
from model.utils import (
get_criterion,
get_network,
get_optimizer,
get_scheduler,
load_state,
)
from utils.setup import (
get_logger,
get_saved_dir,
get_storage_dir,
load_config,
set_seed,
)
from utils.trainer.log import result2csv
from utils.trainer.semi import mixmatch_train
from utils.trainer.simclr import linear_test, poison_linear_record, poison_linear_train
def main():
print("===Setup running===")
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", default="./config/defense/mixmatch_finetune/example.yaml"
)
parser.add_argument("--gpu", default="0", type=str)
parser.add_argument(
"--resume",
default="",
type=str,
help="checkpoint name (empty string means the latest checkpoint)\
or False (means training from scratch).",
)
args = parser.parse_args()
finetune_config, finetune_inner_dir, finetune_config_name = load_config(args.config)
pretrain_config, pretrain_inner_dir, pretrain_config_name = load_config(
finetune_config["pretrain_config_path"]
)
pretrain_saved_dir, _ = get_saved_dir(
pretrain_config, pretrain_inner_dir, pretrain_config_name
)
_, pretrain_ckpt_dir, _ = get_storage_dir(
pretrain_config, pretrain_inner_dir, pretrain_config_name
)
# merge the pretrain and finetune config
pretrain_config.update(finetune_config)
config = pretrain_config
saved_dir, log_dir = get_saved_dir(
config, finetune_inner_dir, finetune_config_name, args.resume
)
shutil.copy2(args.config, saved_dir)
storage_dir, ckpt_dir, _ = get_storage_dir(
config,
finetune_inner_dir,
finetune_config_name,
args.resume,
)
shutil.copy2(args.config, storage_dir)
logger = get_logger(log_dir, "mixmatch_finetune.log", args.resume)
set_seed(**config["seed"])
logger.info("Load finetune config from: {}".format(args.config))
logger.info(
"Load pretrain config from: {}".format(finetune_config["pretrain_config_path"])
)
logger.info("\n===Prepare data===")
bd_config = config["backdoor"]
logger.info("Load backdoor config:\n{}".format(bd_config))
bd_transform = get_bd_transform(bd_config)
target_label = bd_config["target_label"]
pre_transform = get_transform(config["transform"]["pre"])
train_primary_transform = get_transform(config["transform"]["train"]["primary"])
train_remaining_transform = get_transform(config["transform"]["train"]["remaining"])
train_transform = {
"pre": pre_transform,
"primary": train_primary_transform,
"remaining": train_remaining_transform,
}
logger.info("Training transformations:\n {}".format(train_transform))
test_primary_transform = get_transform(config["transform"]["test"]["primary"])
test_remaining_transform = get_transform(config["transform"]["test"]["remaining"])
test_transform = {
"pre": pre_transform,
"primary": test_primary_transform,
"remaining": test_remaining_transform,
}
logger.info("Test transformations:\n {}".format(test_transform))
logger.info("Load dataset from: {}".format(config["dataset_dir"]))
clean_train_data = get_dataset(
config["dataset_dir"], train_transform, prefetch=config["prefetch"]
)
# Load poisoned training index from pretrain.
poison_idx_path = os.path.join(pretrain_saved_dir, "poison_idx.npy")
poison_train_idx = np.load(poison_idx_path)
poison_train_data = PoisonLabelDataset(
clean_train_data, bd_transform, poison_train_idx, target_label
)
clean_test_data = get_dataset(
config["dataset_dir"], test_transform, train=False, prefetch=config["prefetch"]
)
poison_test_idx = gen_poison_idx(clean_test_data, target_label)
poison_test_data = PoisonLabelDataset(
clean_test_data, bd_transform, poison_test_idx, target_label
)
poison_train_loader = get_loader(
poison_train_data, config["warmup"]["loader"], shuffle=True
)
poison_eval_loader = get_loader(poison_train_data, config["warmup"]["loader"])
clean_test_loader = get_loader(clean_test_data, config["warmup"]["loader"])
poison_test_loader = get_loader(poison_test_data, config["warmup"]["loader"])
logger.info("\n===Setup training===")
gpu = int(args.gpu)
torch.cuda.set_device(gpu)
logger.info("Set gpu to: {}".format(gpu))
backbone = get_network(config["network"])
logger.info("Create network: {}".format(config["network"]))
self_model = SelfModel(backbone)
self_model = self_model.cuda(gpu)
# Load backbone from the pretrained model.
load_state(
self_model, config["pretrain_checkpoint"], pretrain_ckpt_dir, gpu, logger
)
linear_model = LinearModel(backbone, backbone.feature_dim, config["num_classes"])
linear_model.linear.cuda(gpu)
warmup_criterion = get_criterion(config["warmup"]["criterion"])
logger.info("Create criterion: {} for warmup".format(warmup_criterion))
warmup_criterion = warmup_criterion.cuda(gpu)
semi_criterion = get_criterion(config["semi"]["criterion"])
semi_criterion = semi_criterion.cuda(gpu)
logger.info("Create criterion: {} for semi-training".format(semi_criterion))
optimizer = get_optimizer(linear_model, config["optimizer"])
logger.info("Create optimizer: {}".format(optimizer))
scheduler = get_scheduler(optimizer, config["lr_scheduler"])
logger.info("Create learning rete scheduler: {}".format(config["lr_scheduler"]))
resumed_epoch, best_acc, best_epoch = load_state(
linear_model,
args.resume,
ckpt_dir,
gpu,
logger,
optimizer,
scheduler,
is_best=True,
)
num_epochs = config["warmup"]["num_epochs"] + config["semi"]["num_epochs"]
for epoch in range(num_epochs - resumed_epoch):
logger.info("===Epoch: {}/{}===".format(epoch + resumed_epoch + 1, num_epochs))
if (epoch + resumed_epoch + 1) <= config["warmup"]["num_epochs"]:
logger.info("Poisoned linear warmup...")
poison_train_result = poison_linear_train(
linear_model,
poison_train_loader,
warmup_criterion,
optimizer,
logger,
)
else:
record_list = poison_linear_record(
linear_model, poison_eval_loader, warmup_criterion
)
logger.info("Mining clean data from poisoned dataset...")
semi_idx = get_semi_idx(record_list, config["semi"]["epsilon"], logger)
xdata = MixMatchDataset(poison_train_data, semi_idx, labeled=True)
udata = MixMatchDataset(poison_train_data, semi_idx, labeled=False)
xloader = get_loader(
xdata, config["semi"]["loader"], shuffle=True, drop_last=True
)
uloader = get_loader(
udata, config["semi"]["loader"], shuffle=True, drop_last=True
)
logger.info("MixMatch training...")
poison_train_result = mixmatch_train(
linear_model,
xloader,
uloader,
semi_criterion,
optimizer,
epoch,
logger,
**config["semi"]["mixmatch"]
)
logger.info("Test model on clean data...")
clean_test_result = linear_test(
linear_model, clean_test_loader, warmup_criterion, logger
)
logger.info("Test model on poison data...")
poison_test_result = linear_test(
linear_model, poison_test_loader, warmup_criterion, logger
)
if scheduler is not None:
scheduler.step()
logger.info(
"Adjust learning rate to {}".format(optimizer.param_groups[0]["lr"])
)
result = {
"poison_train": poison_train_result,
"poison_test": poison_test_result,
"clean_test": clean_test_result,
}
result2csv(result, log_dir)
is_best = False
if clean_test_result["acc"] > best_acc:
is_best = True
best_acc = clean_test_result["acc"]
best_epoch = epoch + resumed_epoch + 1
logger.info("Best test accuaracy {} in epoch {}".format(best_acc, best_epoch))
saved_dict = {
"epoch": epoch + resumed_epoch + 1,
"result": result,
"model_state_dict": linear_model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"best_acc": best_acc,
"best_epoch": best_epoch,
}
if scheduler is not None:
saved_dict["scheduler_state_dict"] = scheduler.state_dict()
if is_best:
ckpt_path = os.path.join(ckpt_dir, "best_model.pt")
torch.save(saved_dict, ckpt_path)
logger.info("Save the best model to {}".format(ckpt_path))
ckpt_path = os.path.join(ckpt_dir, "latest_model.pt")
torch.save(saved_dict, ckpt_path)
logger.info("Save the latest model to {}".format(ckpt_path))
if __name__ == "__main__":
main()