-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenGLRender.py
executable file
·207 lines (163 loc) · 6.52 KB
/
openGLRender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python2
# LetSat OpenGL Renderer
# 14 Feb 2018 - v0.1 - Initial Implementation
# 26 Mar 2018 - v0.2 - Setup for use as library
# v0.2
# Chandler Griscom
from OpenGL.GLUT import *
from OpenGL.GLU import *
from OpenGL.GL import *
from OpenGL.GL.framebufferobjects import *
import sys
import math
import time
import numpy
from PIL import Image
import cv2
import argparse
Image.MAX_IMAGE_PIXELS = 16384*8192
name = 'LetSat OpenGL Rendering'
RAD_EARTH = 6371000.
angleX = 0
angleA = 0
def main():
parser = argparse.ArgumentParser(description='Export an OpenGL rendering with the given parameters and texture.')
parser.add_argument('lat', type=float,
help='Latitude of the satellite (-90.0 to 90.0)')
parser.add_argument('long', type=float,
help='Longitude of the satellite (-180.0 to 180.0)')
parser.add_argument('alt', type=float,
help='Altitude of the satellite in km')
parser.add_argument('--size', type=int, default=1024,
help='Image size, default 1024')
parser.add_argument('--fov', type=float, default=141,
help='Field of view angle, default 141')
parser.add_argument('texture', type=str,
help='Path to the earth texture file')
parser.add_argument('outfile', type=str,
help='Path to the output image')
args = parser.parse_args()
renderInternal(args)
def renderToCV(lat, long, alt, size, fov, texture):
return renderInternal(lat, long, alt, size, fov, texture, None)
def renderToFile(lat, long, alt, size, fov, texture, outfile):
class RenderArgs:
def __init__(self):
self.lat = lat
self.long = long
self.alt = alt
self.size = size
self.fov = fov
self.texture = texture
self.outfile = outfile
return renderInternal(RenderArgs())
def renderInternal(args):
global angleA, angleX
angleX = args.lat # Set latitude
angleA = -(args.long - 90) # Set longitude
args.alt *= 1000 # Convert to meters
glutInit(sys.argv)
FRAMEBUFFER = 1
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)
glutInitWindowSize(args.size, args.size)
#glutInitWindowPosition(350, 200)
glutCreateWindow(name)
if FRAMEBUFFER:
glutHideWindow()
fbo = glGenFramebuffers(1)
color_buf = glGenRenderbuffers(1)
depth_buf = glGenRenderbuffers(1)
glBindFramebuffer(GL_FRAMEBUFFER, fbo)
glBindRenderbuffer(GL_RENDERBUFFER, color_buf)
glRenderbufferStorage(GL_RENDERBUFFER,GL_RGBA8,args.size,args.size)
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, color_buf)
glBindRenderbuffer(GL_RENDERBUFFER, depth_buf)
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, args.size,args.size)
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth_buf)
glClearColor(0., 0., 0., 1.)
glShadeModel(GL_SMOOTH)
glEnable(GL_CULL_FACE)
glEnable(GL_DEPTH_TEST)
glEnable(GL_BLEND)
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA)
glEnable(GL_LIGHTING)
lightZeroPosition = [1.,1.,1., 1.]
lightZeroColor = [0.8, 1.0, 0.8, 1.0]
glLightfv(GL_LIGHT0, GL_POSITION, lightZeroPosition)
glLightfv(GL_LIGHT0, GL_DIFFUSE, lightZeroColor)
glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 0.1)
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.05)
glEnable(GL_LIGHT0)
glTranslatef(0, 0, 0)
global RAD_EARTH
global earthTex
earthTex = loadtexture(args.texture)
global sphere
sphere = gluNewQuadric() # Create A Pointer To The Quadric Object
gluQuadricNormals(sphere, GL_SMOOTH)
gluQuadricTexture(sphere, GL_TRUE)
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP)
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
glutDisplayFunc(displayscene) # VCalled once
glutIdleFunc(displayscene)
glMatrixMode(GL_PROJECTION)
gluPerspective(args.fov, 1., args.alt, RAD_EARTH + args.alt) # fovy, aspect, near, far
glMatrixMode(GL_MODELVIEW)
gluLookAt(RAD_EARTH + args.alt, 0, 0, # Eye XYZ
0, 0, 0, # Center
0, 0, RAD_EARTH) # Up
glPushMatrix()
glutPostRedisplay()
glutMainLoopEvent()
displayscene()
return getImage(args, args.size,args.size)
def displayscene():
global sphere, angleA, angleX, fov, earthTex
global RAD_EARTH
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
glPushMatrix()
glRotate(angleA,0,0,1)
glRotate(angleX,math.sin(math.radians(angleA)),math.cos(math.radians(angleA)),0)
glBindTexture(GL_TEXTURE_2D, earthTex)
# quadric rad slices stacks
gluSphere(sphere, RAD_EARTH, 360, 360)
glPopMatrix()
return
def loadtexture(fileImg):
glEnable(GL_TEXTURE_2D)
image = Image.open(fileImg)
ix = image.size[0]
iy = image.size[1]
image = image.tobytes("raw", "RGBX", 0, -1)
textID = glGenTextures(1)
glBindTexture(GL_TEXTURE_2D, textID)
glPixelStorei(GL_UNPACK_ALIGNMENT, 1)
glTexImage2D(GL_TEXTURE_2D, 0, 3, ix, iy, 0, GL_RGBA, GL_UNSIGNED_BYTE, image)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL)
return textID
def getImage(args, width, height):
glPixelStorei(GL_PACK_ALIGNMENT, 1)
glReadBuffer(GL_COLOR_ATTACHMENT0)
buff = glReadPixels(0, 0, width, height, GL_RGB,
GL_UNSIGNED_BYTE)
image = Image.frombytes(mode="RGB", size=(width, height),
data=buff)
image = image.transpose(Image.FLIP_TOP_BOTTOM)
image = performCVOps(args, image)
return image
def performCVOps(args, pilImage):
opencvImage = numpy.array(pilImage)
if not args.outfile == None:
cv2.imwrite(args.outfile, cv2.cvtColor(opencvImage, cv2.COLOR_BGR2RGB))
return None
else:
return opencvImage
if __name__ == '__main__':
main()