-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmodel.py
72 lines (66 loc) · 2.73 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch.nn as nn
import torch.nn.functional as F
import models
class Net(nn.Module):
def __init__(self, num_classes):
super(Net, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 10, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(10, 16, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(16, 32, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(32 * 6 * 6, 100),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(100, 100),
nn.ReLU(inplace=True),
nn.Linear(100, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 32 * 6 * 6)
x = self.classifier(x)
return F.log_softmax(x, dim=1)
def create_model(name, num_classes):
if name == 'resnet34':
model = models.resnet34(True)
model.fc = nn.Linear(model.fc.in_features, num_classes)
nn.init.xavier_uniform(model.fc.weight)
nn.init.constant(model.fc.bias, 0)
elif name == 'resnet152':
model = models.resnet152(True)
model.fc = nn.Linear(model.fc.in_features, num_classes)
nn.init.xavier_uniform(model.fc.weight)
nn.init.constant(model.fc.bias, 0)
elif name == 'densenet121':
model = models.densenet121(True)
model.classifier = nn.Linear(model.classifier.in_features, num_classes)
nn.init.xavier_uniform(model.classifier.weight)
nn.init.constant(model.classifier.bias, 0)
elif name == 'vgg11_bn':
model = models.vgg11_bn(False, num_classes)
elif name == 'vgg19_bn':
model = models.vgg19_bn(True)
model.classifier._modules['6'] = nn.Linear(model.classifier._modules['6'].in_features, num_classes)
nn.init.xavier_uniform(model.classifier._modules['6'].weight)
nn.init.constant(model.classifier._modules['6'].bias, 0)
elif name == 'alexnet':
model = models.alexnet(True)
model.classifier._modules['6'] = nn.Linear(model.classifier._modules['6'].in_features, num_classes)
nn.init.xavier_uniform(model.classifier._modules['6'].weight)
nn.init.constant(model.classifier._modules['6'].bias, 0)
else:
model = Net(num_classes)
return model