Open-Retrievals 统一调用和微调文本向量、检索、重排模型,使信息检索、RAG应用更加便捷
- 支持文本向量微调,对比学习、大模型、point-wise、pairwise、listwise
- 支持重排微调,cross-encoder、ColBERT、LLM
- 支持定制化、模块化RAG,支持在Transformers、Langchain、LlamaIndex中便捷使用微调后的模型
- 测试指标为10%t2-reranking数据的MAP
- 阅读更多实例
pip安装
pip install transformers
pip install open-retrievals
向量模型使用:预训练权重
from retrievals import AutoModelForEmbedding
sentences = [
"在1974年,第一次在东南亚打自由搏击就得了冠军",
"中国古拳法唯一传人鬼王达,被喻为空手道的克星,绰号魔鬼筋肉人",
"1982年打赢了日本重炮手雷龙,接着连续三年打败所有日本空手道高手,赢得全日本自由搏击冠军",
"古人有云,有功夫,无懦夫"
]
model_name_or_path = 'intfloat/multilingual-e5-base'
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method="mean")
embeddings = model.encode(sentences, normalize_embeddings=True) # 384维度的文本向量
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
检索:使用Faiss向量数据库
from retrievals import AutoModelForEmbedding, AutoModelForRetrieval
index_path = './database/faiss/faiss.index'
sentences = ['在中国是中国人', '在美国是美国人', '2000人民币大于3000美元']
model_name_or_path = "sentence-transformers/all-MiniLM-L6-v2"
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method='mean')
model.build_index(sentences, index_path=index_path)
query_embed = model.encode("在加拿大是加拿大人")
matcher = AutoModelForRetrieval()
dists, indices = matcher.search(query_embed, index_path=index_path)
print(indices)
重排模型使用:预训练权重
from retrievals import AutoModelForRanking
model_name_or_path: str = "BAAI/bge-reranker-base"
rerank_model = AutoModelForRanking.from_pretrained(model_name_or_path)
scores_list = rerank_model.compute_score(
[["在1974年,第一次在东南亚打自由搏击就得了冠军", "1982年打赢了日本重炮手雷龙"],
["铁砂掌,源于泗水铁掌帮,三日练成,收费六百", "铁布衫,源于福建省以北70公里,五日练成,收费八百"]]
)
print(scores_list)
RAG:搭配Langchain
pip install langchain
pip install chromadb langchain-chroma
from retrievals.tools.langchain import LangchainEmbedding, LangchainReranker, LangchainLLM
from retrievals import AutoModelForRanking
from langchain.retrievers import ContextualCompressionRetriever
from langchain.prompts.prompt import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_chroma import Chroma as Vectorstore
persist_directory = './database/faiss.index'
embed_model_name_or_path = "sentence-transformers/all-MiniLM-L6-v2"
rerank_model_name_or_path = "BAAI/bge-reranker-base"
llm_model_name_or_path = "microsoft/Phi-3-mini-128k-instruct"
embeddings = LangchainEmbedding(model_name=embed_model_name_or_path)
vectordb = Vectorstore(
collection_name="example_collection",
persist_directory=persist_directory,
embedding_function=embeddings,
)
retrieval_args = {"search_type" :"similarity", "score_threshold": 0.15, "k": 10}
retriever = vectordb.as_retriever(**retrieval_args)
ranker = AutoModelForRanking.from_pretrained(rerank_model_name_or_path)
reranker = LangchainReranker(model=ranker, top_n=3)
compression_retriever = ContextualCompressionRetriever(
base_compressor=reranker, base_retriever=retriever
)
llm = LangchainLLM(model_name_or_path=llm_model_name_or_path)
RESPONSE_TEMPLATE = """[INST]
<>
You are a helpful AI assistant. Use the following pieces of context to answer the user's question.<>
Anything between the following `context` html blocks is retrieved from a knowledge base.
{context}
REMEMBER:
- If you don't know the answer, just say that you don't know, don't try to make up an answer.
- Let's take a deep breath and think step-by-step.
Question: {question}[/INST]
Helpful Answer:
"""
PROMPT = PromptTemplate(template=RESPONSE_TEMPLATE, input_variables=["context", "question"])
qa_chain = RetrievalQA.from_chain_type(
llm,
chain_type='stuff',
retriever=compression_retriever,
chain_type_kwargs={
"verbose": True,
"prompt": PROMPT,
}
)
user_query = '1974年,谁获得了东南亚自由搏击的冠军?'
response = qa_chain({"query": user_query})
print(response)
微调向量模型
import torch.nn as nn
from datasets import load_dataset
from transformers import AutoTokenizer, AdamW, get_linear_schedule_with_warmup, TrainingArguments
from retrievals import AutoModelForEmbedding, RetrievalTrainer, RetrievalCollator, PairwiseModel
from retrievals.losses import ArcFaceAdaptiveMarginLoss, InfoNCE, SimCSE, TripletLoss
model_name_or_path: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
batch_size: int = 32
epochs: int = 3
train_dataset = load_dataset('shibing624/nli_zh', 'STS-B')['train']
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method="mean")
train_model = PairwiseModel(model)
optimizer = AdamW(train_model.parameters(), lr=5e-5)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps
)
training_arguments = TrainingArguments(
output_dir='./checkpoints',
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
remove_unused_columns=False,
logging_steps=100,
report_to="none",
)
trainer = RetrievalTrainer(
model=train_model,
args=training_arguments,
train_dataset=train_dataset,
data_collator=RetrievalCollator(tokenizer, keys=['sentence1', 'sentence2'], max_lengths=[32, 128]),
loss_fn=InfoNCE(nn.CrossEntropyLoss(label_smoothing=0.05)),
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
微调LLM向量模型
import os
import torch.nn as nn
from datasets import load_dataset
from transformers import AutoTokenizer, AdamW, get_linear_schedule_with_warmup, TrainingArguments
from retrievals import AutoModelForEmbedding, RetrievalTrainer, RetrievalCollator, PairwiseModel
from retrievals.losses import InfoNCE, SimCSE, TripletLoss
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
def add_instructions(example):
example['query'] = query_instruction.format(example['query'])
example['positive'] = document_instruction.format(example['positive'])
return example
model_name_or_path: str = "Qwen/Qwen2-1.5B-Instruct"
batch_size: int = 8
epochs: int = 3
query_instruction = "Retrieve relevant passages that answer the query\nQuery: {}"
document_instruction = "Document: {}"
train_dataset = load_dataset('shibing624/nli_zh', 'STS-B')['train']
train_dataset = train_dataset.rename_columns({'sentence1': 'query', 'sentence2': 'positive'})
train_dataset = train_dataset.map(add_instructions)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method="last", use_lora=True)
train_model = PairwiseModel(model, loss_fn=InfoNCE(nn.CrossEntropyLoss(label_smoothing=0.05)))
optimizer = AdamW(train_model.parameters(), lr=5e-5)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps)
training_arguments = TrainingArguments(
output_dir='./checkpoints',
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
remove_unused_columns=False,
logging_steps=100,
report_to="none",
)
trainer = RetrievalTrainer(
model=train_model,
args=training_arguments,
train_dataset=train_dataset,
data_collator=RetrievalCollator(tokenizer, keys=['query', 'positive'], max_lengths=[64, 128]),
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
微调Cross-encoder重排
import os
from transformers import AutoTokenizer, TrainingArguments, get_cosine_schedule_with_warmup, AdamW
from retrievals import RerankCollator, AutoModelForRanking, RerankTrainer, RerankTrainDataset
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
model_name_or_path: str = "BAAI/bge-reranker-base"
max_length: int = 128
learning_rate: float = 3e-5
batch_size: int = 4
epochs: int = 3
output_dir: str = "./checkpoints"
train_dataset = RerankTrainDataset(
"C-MTEB/T2Reranking", positive_key="positive", negative_key="negative", dataset_split='dev'
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForRanking.from_pretrained(model_name_or_path)
optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=0.05 * num_train_steps,
num_training_steps=num_train_steps,
)
training_args = TrainingArguments(
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
num_train_epochs=epochs,
output_dir=output_dir,
remove_unused_columns=False,
logging_steps=100,
report_to="none",
)
trainer = RerankTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=RerankCollator(tokenizer, max_length=max_length),
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
微调ColBERT重排
import os
import transformers
from transformers import (
AdamW,
AutoTokenizer,
TrainingArguments,
get_cosine_schedule_with_warmup,
)
from retrievals import ColBERT, ColBertCollator, RerankTrainer, RetrievalTrainDataset
from retrievals.losses import ColbertLoss
transformers.logging.set_verbosity_error()
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
os.environ["WANDB_DISABLED"] = "true"
model_name_or_path: str = "BAAI/bge-m3"
learning_rate: float = 5e-6
batch_size: int = 32
epochs: int = 3
colbert_dim: int = 1024
output_dir: str = './checkpoints'
train_dataset = RetrievalTrainDataset('C-MTEB/T2Reranking', positive_key='positive', negative_key='negative', dataset_split='dev')
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
data_collator = ColBertCollator(
tokenizer,
query_max_length=128,
document_max_length=256,
positive_key='positive',
negative_key='negative',
)
model = ColBERT.from_pretrained(
model_name_or_path,
colbert_dim=colbert_dim,
loss_fn=ColbertLoss(use_inbatch_negative=False),
)
optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps)
training_args = TrainingArguments(
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
num_train_epochs=epochs,
output_dir=output_dir,
remove_unused_columns=False,
logging_steps=100,
report_to="none",
)
trainer = RerankTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
微调大模型重排
import os
from transformers import (
AdamW,
AutoTokenizer,
TrainingArguments,
get_cosine_schedule_with_warmup,
)
from retrievals import (
LLMRanker,
LLMRerankCollator,
RerankTrainer,
RetrievalTrainDataset,
)
from retrievals.losses import TokenLoss
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
model_name_or_path: str = "Qwen/Qwen2-1.5B-Instruct"
max_length: int = 512
learning_rate: float = 3e-5
batch_size: int = 8
epochs: int = 3
task_prompt: str = (
"""Given a query A and a passage B, determine whether the passage contains an answer to the query"""
"""by providing a prediction of either 'Yes' or 'No'."""
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
train_dataset = RetrievalTrainDataset(
data_name_or_path='C-MTEB/T2Reranking',
positive_key='positive',
negative_key='negative',
query_instruction='A: {}',
document_instruction='B: {}',
dataset_split='dev',
)
data_collator = LLMRerankCollator(
tokenizer=tokenizer, max_length=max_length, prompt=task_prompt, add_target_token='Yes'
)
token_index = tokenizer('Yes', add_special_tokens=False)['input_ids'][-1]
model = LLMRanker.from_pretrained(
model_name_or_path,
causal_lm=True,
use_fp16=True,
loss_fn=TokenLoss(token_index=token_index),
use_lora=True,
)
optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=0.05 * num_train_steps,
num_training_steps=num_train_steps,
)
training_args = TrainingArguments(
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
num_train_epochs=epochs,
output_dir="./checkpoints",
remove_unused_columns=False,
report_to="none",
)
trainer = RerankTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
coming soon