Skip to content

Latest commit

 

History

History
497 lines (416 loc) · 18.1 KB

README_zh-CN.md

File metadata and controls

497 lines (416 loc) · 18.1 KB

structure

Open-Retrievals 统一调用和微调文本向量、检索、重排模型,使信息检索、RAG应用更加便捷

  • 支持文本向量微调,对比学习、大模型、point-wise、pairwise、listwise
  • 支持重排微调,cross-encoder、ColBERT、LLM
  • 支持定制化、模块化RAG,支持在Transformers、Langchain、LlamaIndex中便捷使用微调后的模型
实验 模型 原分数 微调分数 Demo代码
pairwise向量微调 bge-base-zh-v1.5 0.657 0.703 Open In Colab
大模型向量LoRA微调 e5-mistral-7b-instruct 0.651 0.699 Open In Colab
cross encoder重排 bge-reranker-base 0.666 0.706 Open In Colab
迟交互colbert重排 bge-m3 0.657 0.695 Open In Colab
大模型重排 bge-reranker-v2-gemma 0.637 0.706 Open In Colab

安装

pip安装

pip install transformers
pip install open-retrievals

快速入门

Open In Colab

向量模型使用:预训练权重
from retrievals import AutoModelForEmbedding

sentences = [
    "在1974年,第一次在东南亚打自由搏击就得了冠军",
    "中国古拳法唯一传人鬼王达,被喻为空手道的克星,绰号魔鬼筋肉人",
    "1982年打赢了日本重炮手雷龙,接着连续三年打败所有日本空手道高手,赢得全日本自由搏击冠军",
    "古人有云,有功夫,无懦夫"
]

model_name_or_path = 'intfloat/multilingual-e5-base'
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method="mean")
embeddings = model.encode(sentences, normalize_embeddings=True)  # 384维度的文本向量
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
检索:使用Faiss向量数据库
from retrievals import AutoModelForEmbedding, AutoModelForRetrieval

index_path = './database/faiss/faiss.index'
sentences = ['在中国是中国人', '在美国是美国人', '2000人民币大于3000美元']
model_name_or_path = "sentence-transformers/all-MiniLM-L6-v2"
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method='mean')
model.build_index(sentences, index_path=index_path)

query_embed = model.encode("在加拿大是加拿大人")
matcher = AutoModelForRetrieval()
dists, indices = matcher.search(query_embed, index_path=index_path)
print(indices)
重排模型使用:预训练权重
from retrievals import AutoModelForRanking

model_name_or_path: str = "BAAI/bge-reranker-base"
rerank_model = AutoModelForRanking.from_pretrained(model_name_or_path)
scores_list = rerank_model.compute_score(
    [["在1974年,第一次在东南亚打自由搏击就得了冠军", "1982年打赢了日本重炮手雷龙"],
     ["铁砂掌,源于泗水铁掌帮,三日练成,收费六百", "铁布衫,源于福建省以北70公里,五日练成,收费八百"]]
)
print(scores_list)
RAG:搭配Langchain
pip install langchain
pip install chromadb langchain-chroma

Open In Colab

from retrievals.tools.langchain import LangchainEmbedding, LangchainReranker, LangchainLLM
from retrievals import AutoModelForRanking
from langchain.retrievers import ContextualCompressionRetriever
from langchain.prompts.prompt import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_chroma import Chroma as Vectorstore

persist_directory = './database/faiss.index'
embed_model_name_or_path = "sentence-transformers/all-MiniLM-L6-v2"
rerank_model_name_or_path = "BAAI/bge-reranker-base"
llm_model_name_or_path = "microsoft/Phi-3-mini-128k-instruct"

embeddings = LangchainEmbedding(model_name=embed_model_name_or_path)
vectordb = Vectorstore(
    collection_name="example_collection",
    persist_directory=persist_directory,
    embedding_function=embeddings,
)
retrieval_args = {"search_type" :"similarity", "score_threshold": 0.15, "k": 10}
retriever = vectordb.as_retriever(**retrieval_args)

ranker = AutoModelForRanking.from_pretrained(rerank_model_name_or_path)
reranker = LangchainReranker(model=ranker, top_n=3)
compression_retriever = ContextualCompressionRetriever(
    base_compressor=reranker, base_retriever=retriever
)

llm = LangchainLLM(model_name_or_path=llm_model_name_or_path)

RESPONSE_TEMPLATE = """[INST]
<>
You are a helpful AI assistant. Use the following pieces of context to answer the user's question.<>
Anything between the following `context` html blocks is retrieved from a knowledge base.

    {context}

REMEMBER:
- If you don't know the answer, just say that you don't know, don't try to make up an answer.
- Let's take a deep breath and think step-by-step.

Question: {question}[/INST]
Helpful Answer:
"""

PROMPT = PromptTemplate(template=RESPONSE_TEMPLATE, input_variables=["context", "question"])

qa_chain = RetrievalQA.from_chain_type(
    llm,
    chain_type='stuff',
    retriever=compression_retriever,
    chain_type_kwargs={
        "verbose": True,
        "prompt": PROMPT,
    }
)

user_query = '1974年,谁获得了东南亚自由搏击的冠军?'
response = qa_chain({"query": user_query})
print(response)

微调

微调向量模型
import torch.nn as nn
from datasets import load_dataset
from transformers import AutoTokenizer, AdamW, get_linear_schedule_with_warmup, TrainingArguments
from retrievals import AutoModelForEmbedding, RetrievalTrainer, RetrievalCollator, PairwiseModel
from retrievals.losses import ArcFaceAdaptiveMarginLoss, InfoNCE, SimCSE, TripletLoss

model_name_or_path: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
batch_size: int = 32
epochs: int = 3

train_dataset = load_dataset('shibing624/nli_zh', 'STS-B')['train']
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method="mean")
train_model = PairwiseModel(model)

optimizer = AdamW(train_model.parameters(), lr=5e-5)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_linear_schedule_with_warmup(
    optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps
)

training_arguments = TrainingArguments(
    output_dir='./checkpoints',
    num_train_epochs=epochs,
    per_device_train_batch_size=batch_size,
    remove_unused_columns=False,
    logging_steps=100,
    report_to="none",
)
trainer = RetrievalTrainer(
    model=train_model,
    args=training_arguments,
    train_dataset=train_dataset,
    data_collator=RetrievalCollator(tokenizer, keys=['sentence1', 'sentence2'], max_lengths=[32, 128]),
    loss_fn=InfoNCE(nn.CrossEntropyLoss(label_smoothing=0.05)),
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
微调LLM向量模型
import os
import torch.nn as nn
from datasets import load_dataset
from transformers import AutoTokenizer, AdamW, get_linear_schedule_with_warmup, TrainingArguments
from retrievals import AutoModelForEmbedding, RetrievalTrainer, RetrievalCollator, PairwiseModel
from retrievals.losses import InfoNCE, SimCSE, TripletLoss
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

def add_instructions(example):
    example['query'] = query_instruction.format(example['query'])
    example['positive'] = document_instruction.format(example['positive'])
    return example

model_name_or_path: str = "Qwen/Qwen2-1.5B-Instruct"
batch_size: int = 8
epochs: int = 3
query_instruction = "Retrieve relevant passages that answer the query\nQuery: {}"
document_instruction = "Document: {}"

train_dataset = load_dataset('shibing624/nli_zh', 'STS-B')['train']
train_dataset = train_dataset.rename_columns({'sentence1': 'query', 'sentence2': 'positive'})
train_dataset = train_dataset.map(add_instructions)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForEmbedding.from_pretrained(model_name_or_path, pooling_method="last", use_lora=True)
train_model = PairwiseModel(model, loss_fn=InfoNCE(nn.CrossEntropyLoss(label_smoothing=0.05)))
optimizer = AdamW(train_model.parameters(), lr=5e-5)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps)

training_arguments = TrainingArguments(
    output_dir='./checkpoints',
    num_train_epochs=epochs,
    per_device_train_batch_size=batch_size,
    remove_unused_columns=False,
    logging_steps=100,
    report_to="none",
)
trainer = RetrievalTrainer(
    model=train_model,
    args=training_arguments,
    train_dataset=train_dataset,
    data_collator=RetrievalCollator(tokenizer, keys=['query', 'positive'], max_lengths=[64, 128]),
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
微调Cross-encoder重排
import os
from transformers import AutoTokenizer, TrainingArguments, get_cosine_schedule_with_warmup, AdamW
from retrievals import RerankCollator, AutoModelForRanking, RerankTrainer, RerankTrainDataset
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

model_name_or_path: str = "BAAI/bge-reranker-base"
max_length: int = 128
learning_rate: float = 3e-5
batch_size: int = 4
epochs: int = 3
output_dir: str = "./checkpoints"

train_dataset = RerankTrainDataset(
    "C-MTEB/T2Reranking", positive_key="positive", negative_key="negative", dataset_split='dev'
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
model = AutoModelForRanking.from_pretrained(model_name_or_path)
optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(
    optimizer,
    num_warmup_steps=0.05 * num_train_steps,
    num_training_steps=num_train_steps,
)

training_args = TrainingArguments(
    learning_rate=learning_rate,
    per_device_train_batch_size=batch_size,
    num_train_epochs=epochs,
    output_dir=output_dir,
    remove_unused_columns=False,
    logging_steps=100,
    report_to="none",
)
trainer = RerankTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    data_collator=RerankCollator(tokenizer, max_length=max_length),
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
微调ColBERT重排
import os
import transformers
from transformers import (
    AdamW,
    AutoTokenizer,
    TrainingArguments,
    get_cosine_schedule_with_warmup,
)

from retrievals import ColBERT, ColBertCollator, RerankTrainer, RetrievalTrainDataset
from retrievals.losses import ColbertLoss

transformers.logging.set_verbosity_error()
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
os.environ["WANDB_DISABLED"] = "true"

model_name_or_path: str = "BAAI/bge-m3"
learning_rate: float = 5e-6
batch_size: int = 32
epochs: int = 3
colbert_dim: int = 1024
output_dir: str = './checkpoints'

train_dataset = RetrievalTrainDataset('C-MTEB/T2Reranking', positive_key='positive', negative_key='negative', dataset_split='dev')
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
data_collator = ColBertCollator(
    tokenizer,
    query_max_length=128,
    document_max_length=256,
    positive_key='positive',
    negative_key='negative',
)
model = ColBERT.from_pretrained(
    model_name_or_path,
    colbert_dim=colbert_dim,
    loss_fn=ColbertLoss(use_inbatch_negative=False),
)

optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps)

training_args = TrainingArguments(
    learning_rate=learning_rate,
    per_device_train_batch_size=batch_size,
    num_train_epochs=epochs,
    output_dir=output_dir,
    remove_unused_columns=False,
    logging_steps=100,
    report_to="none",
)
trainer = RerankTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    data_collator=data_collator,
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
微调大模型重排
import os
from transformers import (
    AdamW,
    AutoTokenizer,
    TrainingArguments,
    get_cosine_schedule_with_warmup,
)

from retrievals import (
    LLMRanker,
    LLMRerankCollator,
    RerankTrainer,
    RetrievalTrainDataset,
)
from retrievals.losses import TokenLoss
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

model_name_or_path: str = "Qwen/Qwen2-1.5B-Instruct"
max_length: int = 512
learning_rate: float = 3e-5
batch_size: int = 8
epochs: int = 3
task_prompt: str = (
    """Given a query A and a passage B, determine whether the passage contains an answer to the query"""
    """by providing a prediction of either 'Yes' or 'No'."""
)

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
train_dataset = RetrievalTrainDataset(
    data_name_or_path='C-MTEB/T2Reranking',
    positive_key='positive',
    negative_key='negative',
    query_instruction='A: {}',
    document_instruction='B: {}',
    dataset_split='dev',
)
data_collator = LLMRerankCollator(
    tokenizer=tokenizer, max_length=max_length, prompt=task_prompt, add_target_token='Yes'
)
token_index = tokenizer('Yes', add_special_tokens=False)['input_ids'][-1]
model = LLMRanker.from_pretrained(
    model_name_or_path,
    causal_lm=True,
    use_fp16=True,
    loss_fn=TokenLoss(token_index=token_index),
    use_lora=True,
)

optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(
    optimizer,
    num_warmup_steps=0.05 * num_train_steps,
    num_training_steps=num_train_steps,
)

training_args = TrainingArguments(
    learning_rate=learning_rate,
    per_device_train_batch_size=batch_size,
    num_train_epochs=epochs,
    output_dir="./checkpoints",
    remove_unused_columns=False,
    report_to="none",
)
trainer = RerankTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    data_collator=data_collator,
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()

RAG 模块

coming soon

参考与致谢