-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_colbert.py
87 lines (73 loc) · 2.54 KB
/
train_colbert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""ColBERT reranker fine-tuning"""
import os
import transformers
from transformers import (
AdamW,
AutoTokenizer,
TrainingArguments,
get_cosine_schedule_with_warmup,
)
from retrievals import ColBERT, ColBertCollator, RerankTrainer, RetrievalTrainDataset
from retrievals.losses import ColbertLoss
transformers.logging.set_verbosity_error()
os.environ["WANDB_DISABLED"] = "true"
model_name_or_path: str = "hfl/chinese-roberta-wwm-ext"
learning_rate: float = 5e-5
batch_size: int = 32
epochs: int = 3
colbert_dim: int = 128
output_dir: str = './checkpoints'
def train():
train_dataset = RetrievalTrainDataset(
'C-MTEB/T2Reranking', positive_key='positive', negative_key='negative', dataset_split='dev'
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
data_collator = ColBertCollator(
tokenizer,
query_max_length=64,
document_max_length=256,
positive_key='positive',
negative_key='negative',
)
model = ColBERT.from_pretrained(
model_name_or_path,
colbert_dim=colbert_dim,
loss_fn=ColbertLoss(use_inbatch_negative=True),
)
optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(
optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps
)
training_args = TrainingArguments(
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
num_train_epochs=epochs,
output_dir=output_dir,
remove_unused_columns=False,
logging_steps=100,
)
trainer = RerankTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
model.save_pretrained(output_dir)
def predict():
model = ColBERT.from_pretrained(model_name_or_path=output_dir, colbert_dim=colbert_dim)
examples = [
[
"在1974年,第一次在东南亚打自由搏击就得了冠军",
"1982年打赢了日本重炮手雷龙,接着连续三年打败所有日本空手道高手",
],
["铁砂掌,源于泗水铁掌帮,三日练成,收费六百", "铁布衫,源于福建省以北70公里,五日练成,收费八百"],
]
scores = model.compute_score(examples)
print(scores)
if __name__ == '__main__':
train()
predict()