-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaces.py
66 lines (52 loc) · 2.15 KB
/
faces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import cv2
import pickle
face_cascade = cv2.CascadeClassifier('data//haarcascades//haarcascade_frontalface_alt2.xml')
eye_cascade = cv2.CascadeClassifier('data//haarcascades//haarcascade_eye.xml')
smile_cascade = cv2.CascadeClassifier('data//haarcascades//haarcascade_smile.xml')
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read("trainer.yml")
labels = {"persone_name": 1}
with open("labels.pickle", "rb") as f:
labels = pickle.load(f)
labels = {v: k for k, v in labels.items()}
capture = cv2.VideoCapture(0)
while True:
# Capture frame-by-frame
ret, frame = capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray,
scaleFactor=1.5,
minNeighbors=5)
for (x, y, w, h) in faces:
# print(x, y, w, h)
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
# Recognize: Deep Learned Model- Predict; Keras Tenserflow Pytorch Scikit-Learn
id_, conf = recognizer.predict(roi_gray)
if conf >= 45:
# print(id_)
# print(labels[id_])
font = cv2.FONT_HERSHEY_SIMPLEX
name = labels[id_]
color = (255, 255, 255)
stroke = 2
cv2.putText(frame, name, (x, y), font, 1, color, stroke, cv2.LINE_AA)
img_item = "my-image.png"
cv2.imwrite(img_item, roi_color)
color = (255, 0, 0)
stroke = 2
end_cord_x = x + w
end_cord_y = y + h
cv2.rectangle(frame, (x, y), (end_cord_x, end_cord_y), color, stroke)
eyes = eye_cascade.detectMultiScale(roi_gray)
for ex, ey, ew, eh in eyes:
cv2.rectangle(frame, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), stroke)
smile = smile_cascade.detectMultiScale(roi_gray)
for ex, ey, ew, eh in eyes:
cv2.rectangle(frame, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), stroke)
cv2.imshow('frame', frame) # image show
if cv2.waitKey(20) & 0xFF == ord('q'):
break
# When everything is done, release the capture
capture.release()
cv2.destroyAllWindows()