-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
310 lines (272 loc) · 11 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import torch
import numpy as np
import random
from PIL import Image
import torch.utils.data as data
import torchvision.transforms.v2.functional as t_F
import torchvision.transforms.v2 as transforms
print('==================== use dataset.py ====================')
class ShufflePatches(torch.nn.Module):
def shuffle_weight(self, img, factor):
# [t, c, h, w]
h, w = img.shape[-2:]
th, tw = h // factor, w // factor
patches = []
for i in range(factor):
i = i * tw
if i != factor - 1:
patches.append(img[..., i : i + tw])
else:
patches.append(img[..., i:])
random.shuffle(patches)
img = torch.cat(patches, -1)
return img
def __init__(self, factor):
super().__init__()
self.factor = factor
def forward(self, img):
if self.factor == 1:
return img
img = self.shuffle_weight(img, self.factor)
img = img.permute(0, 1, 3, 2)
img = self.shuffle_weight(img, self.factor)
img = img.permute(0, 1, 3, 2)
return img
class Syn_Video(data.Dataset):
def __init__(self, path, transform, ipc, clip_len=8):
super().__init__()
self.path = path
self.transform = transform
self.ipc = ipc
self.clip_len = clip_len
self.video_list = self.load_data_list()
self.all_data = self.video_list
def load_data_list(self):
data_list = []
for label in os.listdir(self.path):
if len(label) > 5:
continue
ilabel = int(label)
# for i in range(len(os.listdir(os.path.join(self.path, label)))//self.clip_len):
for i in range(self.ipc):
data_list.append((os.path.join(self.path, label), i, ilabel))
return data_list
def _load_video(self, video_path, label, ipc_id):
video = []
for i in range(self.clip_len):
frame = Image.open(os.path.join(video_path, 'class{:05d}_id{:05d}_t{:03d}.jpg'.format(label, ipc_id, i)))
frame = t_F.to_dtype(t_F.pil_to_tensor(frame), dtype=torch.float32, scale=True)
video.append(frame)
return torch.stack(video, dim=0)
def __getitem__(self, idx):
path, ipc_id, label = self.video_list[idx]
video = self._load_video(path, label, ipc_id)
video = self.transform(video)
# [T, C, H, W] -> [C, T, H, W]
video = video.permute(1, 0, 2, 3)
return video, label
def __len__(self):
return len(self.video_list)
def set_stage(self, stage):
if stage == 1:
print('use real data')
self.video_list = [item for item in self.all_data if item[1] < self.ipc//2]
elif stage == 2:
print('use recover data')
self.video_list = [item for item in self.all_data if item[1] >= self.ipc//2]
class VideoClsDataset(data.Dataset):
def __init__(self, root, transform, mode, T=8, tau=8, nclips=0):
self.root = root
self.T = T
self.tau = tau
self.nclips = 10 if mode == 'test' else nclips
self.transform = transform
self.mode = mode
self.video_dirs, self.labels = self.load_annotation()
def load_annotation(self,):
pass
def read_images(self, path, frames):
X = []
for i in frames:
image = Image.open(
os.path.join(path, "img_{:05d}.jpg".format(i))
)
convert = transforms.Compose([
transforms.ToImage(),
transforms.ToDtype(torch.float32, scale=True),
transforms.Resize(self.pre_size, antialias=True),
])
X.append(convert(image))
X = torch.stack(X, dim=0)
if self.transform is not None:
X = self.transform(X)
if len(X.shape) == 4:
X = X.unsqueeze(0)
# [S, T, C, H, W] -> [S, C, T, H, W]
X = X.permute(0, 2, 1, 3, 4)
assert len(X.shape) == 5
return X
def __getitem__(self, index):
path = self.video_dirs[index]
label = self.labels[index]
length = len(os.listdir(path))
if length < self.T * self.tau:
interval = length // self.T
else:
interval = self.tau
assert interval >= 0
if self.nclips == 0:
if self.mode == 'train':
start = np.random.randint(1, length - (self.T - 1) * interval + 1)
elif self.mode == 'val':
start = (length - (self.T - 1) * interval) // 2
if interval == 0:
frames = np.array([start] * self.T)
else:
frames = np.arange(start, start + self.T * interval, interval).tolist()
X = self.read_images(
path, frames
)
# [S, C, T, H, W]
return X, label
else:
X = []
start_list = np.linspace(1, length - (self.T - 1) * interval, self.nclips, dtype=int)
for start in start_list:
if interval == 0:
frames = np.array([start] * self.T)
else:
frames = np.arange(start, start + self.T * interval, interval).tolist()
X.append(self.read_images(path, frames))
return torch.cat(X, dim=0), label
def prune_dataset(self, num=1):
lset = set(self.labels)
labels = []
video_dirs = []
for target in lset:
indexes = [i for i,x in enumerate(self.labels) if x == target]
random.shuffle(indexes)
while num > len(indexes):
indexes.extend(indexes[:min(num-len(indexes), len(indexes))])
random.shuffle(indexes)
# print(num, len(indexes))
assert num <= len(indexes)
indexes = indexes[:num]
labels.extend([self.labels[i] for i in indexes])
video_dirs.extend([self.video_dirs[i] for i in indexes])
self.labels = labels
self.video_dirs = video_dirs
def get_init(self, cls_idx, num=1):
indexes = [i for i,x in enumerate(self.labels) if x == cls_idx]
random.shuffle(indexes)
assert num <= len(indexes)
indexes = indexes[:num]
outputs = []
for i in indexes:
outputs.append(self.__getitem__(i)[0])
return torch.stack(outputs, dim=0)
def __len__(self):
return len(self.video_dirs)
class UCF101(VideoClsDataset):
def __init__(self, root, transform, mode, T=8, tau=8, nclips=0):
super().__init__(root, transform, mode, T, tau, nclips)
self.pre_size = (128, 170)
def load_annotation(self):
ann_mode = 'val' if self.mode in ['val', 'test'] else 'train'
annotation_path = os.path.join(self.root, f'ucf101_{ann_mode}_split_1_rawframes.txt')
data_path = os.path.join(self.root, "rawframes")
self.video_dirs = []
self.labels = []
with open(annotation_path, 'r') as fp:
for line in fp:
name, _, label = line.strip().split(" ")
sample_dir = os.path.join(data_path, name)
self.labels.append(int(label))
self.video_dirs.append(sample_dir)
return self.video_dirs, self.labels
class HMDB51(VideoClsDataset):
def __init__(self, root, transform, mode, T=8, tau=8, nclips=0):
super().__init__(root, transform, mode, T, tau, nclips)
self.pre_size = (128, 170)
def load_annotation(self):
ann_mode = 'val' if self.mode in ['val', 'test'] else 'train'
annotation_path = os.path.join(self.root, f'hmdb51_{ann_mode}_split_1_rawframes.txt')
data_path = os.path.join(self.root, "rawframes")
self.video_dirs = []
self.labels = []
with open(annotation_path, 'r') as fp:
for line in fp:
name, _, label = line.strip().split(" ")
sample_dir = os.path.join(data_path, name)
self.labels.append(int(label))
self.video_dirs.append(sample_dir)
return self.video_dirs, self.labels
class K400(VideoClsDataset):
def __init__(self, root, transform, mode, T=8, tau=8, nclips=0):
super().__init__(root, transform, mode, T, tau, nclips)
self.pre_size = (64, 64)
def load_annotation(self):
ann_mode = 'val' if self.mode in ['val', 'test'] else 'train'
annotation_path = os.path.join(self.root, f'kinetics400_{ann_mode}_list_rawframes.txt')
self.video_dirs = []
self.labels = []
with open(annotation_path, 'r') as fp:
for line in fp:
name, label = line.strip().split(" ")
sample_dir = os.path.join(self.root, name)
self.labels.append(int(label))
self.video_dirs.append(sample_dir)
return self.video_dirs, self.labels
class ThreeCrop:
def __init__(self, size):
self.five_crop = transforms.FiveCrop(size)
def __call__(self, img):
# Get the five crops
crops = self.five_crop(img)
# Select three out of the five (top-left, bottom-right, center)
return torch.stack([crops[0], crops[2], crops[4]])
def load_dataset(data, mode, tau=8, root='mmaction2', cr=0, mipc=0):
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225] # use imagenet statistics
size = (112, 112) if data in ['ucf101', 'hmdb51'] else (56, 56)
if mode in ['train', 'select']:
transform = transforms.Compose([
transforms.RandomResizedCrop(size, antialias=True),
transforms.RandomHorizontalFlip(),
transforms.Normalize(mean=mean, std=std)
])
elif mode == 'val':
transform = transforms.Compose([
transforms.CenterCrop(size),
transforms.Normalize(mean=mean, std=std)
])
elif mode == 'test':
transform = transforms.Compose([
ThreeCrop(size),
transforms.Normalize(mean=mean, std=std)
])
root = os.path.join(root, 'data', data)
if data == 'ucf101':
if mode == 'select':
dataset = UCF101(root, transform, 'train', tau=tau, nclips=cr)
dataset.prune_dataset(mipc)
else:
dataset = UCF101(root, transform, mode, tau=tau)
elif data == 'hmdb51':
if mode == 'select':
dataset = HMDB51(root, transform, 'train', tau=tau, nclips=cr)
dataset.prune_dataset(mipc)
else:
dataset = HMDB51(root, transform, mode, tau=tau)
elif data == 'k400':
if mode == 'select':
dataset = K400(root, transform, 'train', tau=tau, nclips=cr)
dataset.prune_dataset(mipc)
else:
dataset = K400(root, transform, mode, tau=tau)
return dataset
def init_real(args, cls_idx, num):
dataset = load_dataset(args.dataset, 'train', tau=8)
init = dataset.get_init(cls_idx, num)
return init