-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmi.py
205 lines (172 loc) · 8 KB
/
mi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# -*- coding: utf-8 -*-
import os, cv2
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import skimage.io as skio
import SimpleITK as sitk
# %% Stefan testing
#DATA_ROOT = './Datasets/Stefan/'
#img1 = cv2.imread(DATA_ROOT+'HE/146558_2_HE.tif', 0)
##img_MPM = cv2.imread(DATA_ROOT+'MPM/146558_2_MPM.tif',0)
#img2 = cv2.imread(DATA_ROOT+'SHG/146558_2_SHG.tif', 0)
#img2 = np.rot90(img2, k=3)
#img2 = cv2.normalize(src=img2, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
# %%
# SimpleElastix
def register_mi(img1, img2, n_res=7):
# img1 = cv2.imread('./Datasets/Eliceiri_patches/patch_trans10-20_rot10-15/B/test/1B_A7_T.tif', 0)
# img2 = cv2.imread('./Datasets/Eliceiri_patches/patch_trans10-20_rot10-15/A/test/1B_A7_R.tif', 0)
img1 = sitk.GetImageFromArray(img1)
img2 = sitk.GetImageFromArray(img2)
parameterMap = sitk.GetDefaultParameterMap('rigid')
parameterMap['ResultImagePixelType'] = ['uint8']
parameterMap['NumberOfResolutions'] = [str(n_res)]
parameterMap['MaximumNumberOfIterations'] = ['1024']
#parameterMap['Optimizer'] = ['AdaGrad']
elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetLogToConsole(False)
elastixImageFilter.SetFixedImage(img2)
elastixImageFilter.SetMovingImage(img1)
elastixImageFilter.SetParameterMap(parameterMap)
elastixImageFilter.Execute()
resultImage = elastixImageFilter.GetResultImage()
img1Reg = sitk.GetArrayFromImage(resultImage).astype('uint8')
transformParameterMap = elastixImageFilter.GetTransformParameterMap()[0].asdict()
tform_parameter = transformParameterMap['TransformParameters']
# radian = float(tform_parameter[0])
# tx = float(tform_parameter[1])
# ty = float(tform_parameter[2])
# skio.imshow(img1Reg)
return img1Reg, tform_parameter
# SimpleElastix
def register_mi_3D(moving, fixed, n_res=7):
# img1 = cv2.imread('./Datasets/Eliceiri_patches/patch_trans10-20_rot10-15/B/test/1B_A7_T.tif', 0)
# img2 = cv2.imread('./Datasets/Eliceiri_patches/patch_trans10-20_rot10-15/A/test/1B_A7_R.tif', 0)
parameterMap = sitk.GetDefaultParameterMap('rigid')
parameterMap['ResultImagePixelType'] = ['uint16']
parameterMap['NumberOfResolutions'] = [str(n_res)]
parameterMap['MaximumNumberOfIterations'] = ['1024']
#parameterMap['Optimizer'] = ['AdaGrad']
elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetLogToConsole(False)
elastixImageFilter.SetFixedImage(fixed)
elastixImageFilter.SetMovingImage(moving)
elastixImageFilter.SetParameterMap(parameterMap)
elastixImageFilter.Execute()
# resultImage = elastixImageFilter.GetResultImage()
# img1Reg = sitk.GetArrayFromImage(resultImage).astype('uint16')
transformParameterMap = elastixImageFilter.GetTransformParameterMap()[0].asdict()
# tform_parameter = transformParameterMap['TransformParameters']
# radian = float(tform_parameter[0])
# tx = float(tform_parameter[1])
# ty = float(tform_parameter[2])
# skio.imshow(img1Reg)
return transformParameterMap
# %%
def overlay(img1, img2):
''' Overlay img1 to R, img2 to G
'''
h, w = img1.shape[:2]
_img = np.zeros((h, w, 3), dtype='uint8')
_img[:,:,0]=img1 # R
img1_r = _img
_img = np.zeros((h, w, 3), dtype='uint8')
_img[:,:,1]=img2 # g
img2_g = _img
overlay = cv2.addWeighted(img1_r,0.5, img2_g,0.5, 0)
return overlay
def register_mi_batch_stefan(data_root, target_dir):
# target_dir='./outputs/MI/Stefan/'
dirA = data_root + 'HE/'
dirB = data_root + 'SHG/'
dir_matches = target_dir + 'matches'
dir_results = target_dir + 'results'
if not os.path.exists(dir_matches):
os.makedirs(dir_matches)
if not os.path.exists(dir_results):
os.makedirs(dir_results)
suffixA = '_' + os.listdir(dirA)[0].split('_')[-1]
nameAs = set([name[:-len(suffixA)] for name in os.listdir(dirA)])
suffixB = '_' + os.listdir(dirB)[0].split('_')[-1]
nameBs = set([name[:-len(suffixB)] for name in os.listdir(dirB)])
f_names = nameAs & nameBs
for f_name in tqdm(f_names):
f_nameA = f_name + suffixA
f_nameB = f_name + suffixB
imgA = cv2.imread(dirA + f_nameA, 0)
imgB = cv2.imread(dirB + f_nameB, 0)
imgB = np.rot90(imgB, k=3)
imgB = cv2.normalize(src=imgB, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
try:
imgA2, field = register_mi(imgA, imgB)
imgA2 = imgA2.astype('uint8')
img_match = np.concatenate([overlay(imgA, imgB), overlay(imgA2, imgB)], axis=1)
except:
heightA, widthA = imgA.shape[:2]
imgA2 = np.zeros((heightA, widthA))
img_match = np.zeros((heightA, widthA))
skio.imsave(f'{dir_matches}/{f_name}.tif', img_match)
skio.imsave(f'{dir_results}/{f_name}_HEreg.tif', imgA2)
return
def register_mi_batch_eliceiri(data_root, target_dir, mode='a2b'):
# data_root='./Datasets/Eliceiri_test/processed/'
# target_dir = './outputs/SIFT/Eliceiri/'
assert mode in ['a2b', 'b2a'], "mode must be in ['a2b', 'b2a']"
dirA = data_root + 'A/test/'
dirB = data_root + 'B/test/'
dir_matches = target_dir + 'matches'
dir_results = target_dir + 'results'
if not os.path.exists(dir_matches):
os.makedirs(dir_matches)
if not os.path.exists(dir_results):
os.makedirs(dir_results)
suffixA = '_' + os.listdir(dirA)[0].split('_')[-1]
nameAs = set([name[:-len(suffixA)] for name in os.listdir(dirA)])
suffixB = '_' + os.listdir(dirB)[0].split('_')[-1]
nameBs = set([name[:-len(suffixB)] for name in os.listdir(dirB)])
f_names = nameAs & nameBs
if mode=='a2b':
for f_name in tqdm(f_names):
f_nameA = f_name + '_T.tif'
f_nameB = f_name + '_R.tif'
imgA = cv2.imread(dirA + f_nameA, 0)
imgB = cv2.imread(dirB + f_nameB, 0)
try:
imgA2, field = register_mi(imgA, imgB)
imgA2 = imgA2.astype('uint8')
img_match = np.concatenate([overlay(imgB, imgA), overlay(imgB, imgA2)], axis=1)
except:
heightA, widthA = imgA.shape[:2]
imgA2 = np.zeros((heightA, widthA))
img_match = np.zeros((heightA, widthA))
skio.imsave(f'{dir_matches}/{f_name}.tif', img_match)
skio.imsave(f'{dir_results}/{f_name}_Areg.tif', imgA2)
elif mode=='b2a':
for f_name in tqdm(f_names):
f_nameA = f_name + '_R.tif'
f_nameB = f_name + '_T.tif'
imgA = cv2.imread(dirA + f_nameA, 0)
imgB = cv2.imread(dirB + f_nameB, 0)
try:
imgB2, field = register_mi(imgB, imgA)
imgB2 = imgB2.astype('uint8')
img_match = np.concatenate([overlay(imgB, imgA), overlay(imgB2, imgA)], axis=1)
except:
heightB, widthB = imgB.shape[:2]
imgB2 = np.zeros((heightB, widthB))
img_match = np.zeros((heightB, widthB))
skio.imsave(f'{dir_matches}/{f_name}.tif', img_match)
skio.imsave(f'{dir_results}/{f_name}_Breg.tif', imgB2)
return
# %%
if __name__ == '__main__':
register_mi_batch_stefan(data_root='./Datasets/Stefan/', target_dir='./outputs/MI/')
register_mi_batch_eliceiri(
data_root='./Datasets/Eliceiri_patches/patch_trans10_rot5/',
target_dir='./outputs/MI/Eliceiri_trans10_rot5_a2b/',
mode='a2b')
register_mi_batch_eliceiri(
data_root='./Datasets/Eliceiri_patches/patch_trans10-20_rot10-15/',
target_dir='./outputs/MI/Eliceiri_trans10-20_rot10-15_b2a/',
mode='b2a')