-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpendulum_cma.py
123 lines (102 loc) · 3.36 KB
/
pendulum_cma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from matplotlib import pyplot as plt
import copy
from dataclasses import dataclass, field
from collections import namedtuple
import cma
import argparse
import symbolic_simple2
import gym
import sys
sys.path.append("../environment")
gym.register(
id="Pendulum-v1",
entry_point="pendulum:PendulumEnv",
max_episode_steps=200,
)
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--control")
parser.add_argument("-r", "--resume", required=False)
parser.add_argument("-i", "--iter", required=False, default=1500)
parser.add_argument("-s", "--sigma", required=False, default=2.5, type=float)
parser.add_argument("-b", "--batch", required=False, default=10, type=int)
parser.add_argument("-p", "--popsize", required=False, default=32, type=int)
args = parser.parse_args()
BATCHSIZE = args.batch
h = 0.05
device = torch.device("cpu")
u = eval("symbolic_simple2.{}()".format(args.control)).to(device)
print(u)
u.eval()
# torch.save(u, "symbolic_" + args.control + "_pendulum_base.pt")
if args.resume:
u = torch.load(args.resume)
u.eval()
def integrate(params):
rews = []
env = gym.make("Pendulum-v1")
env.set_precision(np.float64)
u.p = torch.nn.Parameter(torch.tensor(params).to(device), requires_grad=False)
for b in range(BATCHSIZE):
env.reset()
s = env.get_obs()
totrew = 0
done = False
i = 0
while not done:
act = u(torch.unsqueeze(torch.Tensor(s), 0))
act = u.unscale_action(act.detach().numpy())
s, r, done, _ = env.step(act)
totrew += r
i += 1
rews.append(-totrew)
return np.mean(rews)
params0 = u.p.detach().numpy()
print(f"params0 {params0}")
sigma0 = args.sigma
x, es = cma.fmin2(integrate, params0, sigma0, options={"maxfevals": args.iter, "popsize": args.popsize})
u.p = torch.nn.Parameter(torch.tensor(es.result.xbest).to(device), requires_grad=False)
env = gym.make("Pendulum-v1")
rews = []
for b in range(100):
env.reset()
s = env.get_obs()
totrew = 0
done = False
while not done:
act = u(torch.unsqueeze(torch.Tensor(s), 0))
act = u.unscale_action(act.detach().numpy())
s, r, done, _ = env.step(act)
totrew += r
rews.append(totrew)
print(np.mean(rews), np.std(rews))
print(f"saving model that achieved f={es.result.fbest} ({es.result.xbest} {next(u.parameters()).device}")
if args.resume:
torch.save(u, f"{u.name}_cma_pendulum_retrained.pt")
else:
torch.save(u, f"{u.name}_cma_pendulum_final_model.pt")
u = torch.load(f"{u.name}_cma_pendulum_fav_model.pt").to(device)
print(f"loaded {u} {u.p.detach().numpy()} {next(u.parameters()).device}")
env = gym.make("Pendulum-v1")
rews = []
for b in range(100):
env.reset()
s = env.get_obs()
totrew = 0
done = False
while not done:
act = u(torch.unsqueeze(torch.Tensor(s), 0))
act = u.unscale_action(act.detach().numpy())
s, r, done, _ = env.step(act)
totrew += r
rews.append(totrew)
print(np.mean(rews), np.std(rews))
u.p = torch.nn.Parameter(torch.tensor(es.result.xfavorite), requires_grad=False)
print(f"saving favorite model ({es.result.xfavorite}")
if args.resume:
torch.save(u, f"{u.name}_cma_pendulum_fav_retrained.pt")
else:
torch.save(u, f"{u.name}_cma_pendulum_fav_model.pt")