-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtest_loop.py
433 lines (367 loc) · 14.2 KB
/
test_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
"""Test loop that will calculate image metrics."""
from __future__ import absolute_import, division, print_function
import os
import random
import subprocess
import sys
import numpy as np
import tensorflow as tf
from tensorflow.python.util import deprecation
import mri_data
import mri_model
from mri_util import cfl, fftc, metrics, tf_util
BIN_BART = "bart"
deprecation._PRINT_DEPRECATION_WARNINGS = False
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
tf.app.flags.DEFINE_string("gpu", "single", "Single or multi GPU Mode")
tf.app.flags.DEFINE_string("conv", "complex", "Real or complex convolution")
tf.app.flags.DEFINE_boolean("do_conjugate", "False", "Complex conjugate")
# Data dimensions
tf.app.flags.DEFINE_integer("feat_map", 128, "Number of feature maps")
tf.app.flags.DEFINE_integer("shape_y", 180, "Image shape in Y")
tf.app.flags.DEFINE_integer("shape_z", 80, "Image shape in Z")
tf.app.flags.DEFINE_integer(
"num_channels", 8, "Number of channels for input datasets.")
tf.app.flags.DEFINE_integer(
"num_emaps", 1, "Number of eigen maps for input sensitivity maps."
)
# For logging
tf.app.flags.DEFINE_integer("print_level", 1, "Print out level.")
tf.app.flags.DEFINE_string(
"log_root", "summary", "Root directory where logs are written to."
)
tf.app.flags.DEFINE_string(
"train_dir", "train", "Directory for checkpoints and event logs."
)
tf.app.flags.DEFINE_integer(
"num_summary_image", 4, "Number of images for summary output"
)
tf.app.flags.DEFINE_integer(
"log_every_n_steps", 10, "The frequency with which logs are print."
)
tf.app.flags.DEFINE_integer(
"save_summaries_secs",
10,
"The frequency with which summaries are saved, " + "in seconds.",
)
tf.app.flags.DEFINE_integer(
"save_interval_secs",
10,
"The frequency with which the model is saved, " + "in seconds.",
)
tf.app.flags.DEFINE_integer(
"random_seed", 1000, "Seed to initialize random number generators."
)
# For model
tf.app.flags.DEFINE_integer(
"num_grad_steps", 2, "Number of grad steps for unrolled algorithms"
)
tf.app.flags.DEFINE_boolean(
"do_hard_proj", True, "Turn on/off hard data projection at the end"
)
# Optimization Flags
tf.app.flags.DEFINE_string("device", "0", "GPU device to use.")
tf.app.flags.DEFINE_integer(
"batch_size", 4, "The number of samples in each batch.")
tf.app.flags.DEFINE_float(
"adam_beta2", 0.999, "The exponential decay rate for the 2nd moment estimates."
)
tf.app.flags.DEFINE_float(
"opt_epsilon", 1.0, "Epsilon term for the optimizer.")
tf.app.flags.DEFINE_float("learning_rate", 0.001, "Initial learning rate.")
tf.app.flags.DEFINE_integer(
"max_steps", None, "The maximum number of training steps.")
# Dataset Flags
tf.app.flags.DEFINE_string(
"mask_path", "masks", "Directory where masks are located.")
tf.app.flags.DEFINE_string(
"train_path", "train", "Sub directory where training data are located."
)
tf.app.flags.DEFINE_string(
"dataset_dir", "dataset", "The directory where the dataset files are stored."
)
tf.app.flags.DEFINE_boolean(
"do_validation", True, "Turn on/off validation during training"
)
tf.app.flags.DEFINE_string(
"mode", "train_validate", "Train_validate, train, or predict"
)
tf.app.flags.DEFINE_string(
"activation", "relu", "The activation function used")
# If not defined will loop through entire test directory
tf.app.flags.DEFINE_integer("num_cases", None, "The number of inference files")
# plot middle layer weights in frequency domain
tf.app.flags.DEFINE_integer("layer_num", 0, "The number layer to plot")
FLAGS = tf.app.flags.FLAGS
def main(_):
if FLAGS.batch_size is not 1:
print("Error: to test images, batch size must be 1")
exit()
model_dir = os.path.join(FLAGS.log_root, FLAGS.train_dir)
if not os.path.exists(FLAGS.log_root):
os.makedirs(FLAGS.log_root)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
bart_dir = os.path.join(model_dir, "bart_recon")
if not os.path.exists(bart_dir):
os.makedirs(bart_dir)
run_config = tf.ConfigProto()
run_config.gpu_options.allow_growth = True
with tf.Session(config=run_config) as sess:
"""Execute main function."""
os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.device
if not FLAGS.dataset_dir:
raise ValueError(
"You must supply the dataset directory with " + "--dataset_dir"
)
if FLAGS.random_seed >= 0:
random.seed(FLAGS.random_seed)
np.random.seed(FLAGS.random_seed)
tf.logging.set_verbosity(tf.logging.INFO)
print("Preparing dataset...")
out_shape = [FLAGS.shape_z, FLAGS.shape_y]
test_dataset, num_files = mri_data.create_dataset(
os.path.join(FLAGS.dataset_dir, "test"),
FLAGS.mask_path,
num_channels=FLAGS.num_channels,
num_emaps=FLAGS.num_emaps,
batch_size=FLAGS.batch_size,
out_shape=out_shape,
)
# channels first: (batch, channels, z, y)
# placeholders
ks_shape = [None, FLAGS.shape_z, FLAGS.shape_y, FLAGS.num_channels]
ks_place = tf.placeholder(tf.complex64, ks_shape)
sense_shape = [None, FLAGS.shape_z,
FLAGS.shape_y, 1, FLAGS.num_channels]
sense_place = tf.placeholder(tf.complex64, sense_shape)
im_shape = [None, FLAGS.shape_z, FLAGS.shape_y, 1]
im_truth_place = tf.placeholder(tf.complex64, im_shape)
# run through unrolled
im_out_place = mri_model.unroll_fista(
ks_place,
sense_place,
is_training=True,
verbose=True,
do_hardproj=FLAGS.do_hard_proj,
num_summary_image=FLAGS.num_summary_image,
resblock_num_features=FLAGS.feat_map,
num_grad_steps=FLAGS.num_grad_steps,
conv=FLAGS.conv,
do_conjugate=FLAGS.do_conjugate,
)
saver = tf.train.Saver()
summary_writer = tf.summary.FileWriter(model_dir, sess.graph)
# initialize model
print("[*] initializing network...")
if not load(model_dir, saver, sess):
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess, coord)
# See how many parameters are in model
total_parameters = 0
for variable in tf.trainable_variables():
variable_parameters = 1
for dim in variable.get_shape():
variable_parameters *= dim.value
total_parameters += variable_parameters
print("Total number of trainable parameters: %d" % total_parameters)
test_iterator = test_dataset.make_one_shot_iterator()
features, labels = test_iterator.get_next()
ks_truth = labels
ks_in = features["ks_input"]
sense_in = features["sensemap"]
mask_recon = features["mask_recon"]
im_truth = tf_util.model_transpose(ks_truth * mask_recon, sense_in)
total_summary = tf.summary.merge_all()
output_psnr = []
output_nrmse = []
output_ssim = []
cs_psnr = []
cs_nrmse = []
cs_ssim = []
for test_file in range(num_files):
ks_in_run, sense_in_run, im_truth_run = sess.run(
[ks_in, sense_in, im_truth]
)
im_out, total_summary_run = sess.run(
[im_out_place, total_summary],
feed_dict={
ks_place: ks_in_run,
sense_place: sense_in_run,
im_truth_place: im_truth_run,
},
)
# CS recon
bart_test = bart_cs(bart_dir, ks_in_run, sense_in_run, l1=0.007)
# bart_test = None
# handle batch dimension
for b in range(FLAGS.batch_size):
truth = im_truth_run[b, :, :, :]
out = im_out[b, :, :, :]
psnr, nrmse, ssim = metrics.compute_all(
truth, out, sos_axis=-1)
output_psnr.append(psnr)
output_nrmse.append(nrmse)
output_ssim.append(ssim)
print("output mean +/ standard deviation psnr, nrmse, ssim")
print(
np.mean(output_psnr),
np.std(output_psnr),
np.mean(output_nrmse),
np.std(output_nrmse),
np.mean(output_ssim),
np.std(output_ssim),
)
psnr, nrmse, ssim = metrics.compute_all(
im_truth_run, bart_test, sos_axis=-1
)
cs_psnr.append(psnr)
cs_nrmse.append(nrmse)
cs_ssim.append(ssim)
print("cs mean +/ standard deviation psnr, nrmse, ssim")
print(
np.mean(cs_psnr),
np.std(cs_psnr),
np.mean(cs_nrmse),
np.std(cs_nrmse),
np.mean(cs_ssim),
np.std(cs_ssim),
)
print("End of testing loop")
txt_path = os.path.join(model_dir, "metrics.txt")
f = open(txt_path, "w")
f.write(
"parameters = "
+ str(total_parameters)
+ "\n"
+ "output psnr = "
+ str(np.mean(output_psnr))
+ " +\- "
+ str(np.std(output_psnr))
+ "\n"
+ "output nrmse = "
+ str(np.mean(output_nrmse))
+ " +\- "
+ str(np.std(output_nrmse))
+ "\n"
+ "output ssim = "
+ str(np.mean(output_ssim))
+ " +\- "
+ str(np.std(output_ssim))
+ "\n"
"cs psnr = "
+ str(np.mean(cs_psnr))
+ " +\- "
+ str(np.std(cs_psnr))
+ "\n"
+ "output nrmse = "
+ str(np.mean(cs_nrmse))
+ " +\- "
+ str(np.std(cs_nrmse))
+ "\n"
+ "output ssim = "
+ str(np.mean(cs_ssim))
+ " +\- "
+ str(np.std(cs_ssim))
)
f.close()
def load(log_dir, saver, sess):
print("[*] Reading Checkpoints...")
ckpt = tf.train.get_checkpoint_state(log_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print("[*] Model restored.")
return True
else:
print("[*] Failed to find a checkpoint")
return False
def bart_cs(bart_dir, ks, sensemap, l1=0.01):
cfl_ks = np.squeeze(ks)
cfl_ks = np.expand_dims(cfl_ks, -2)
cfl_sensemap = np.squeeze(sensemap)
cfl_sensemap = np.expand_dims(cfl_sensemap, -2)
ks_dir = os.path.join(bart_dir, "file_ks")
sense_dir = os.path.join(bart_dir, "file_sensemap")
img_dir = os.path.join(bart_dir, "file_img")
cfl.write(ks_dir, cfl_ks, "R")
cfl.write(sense_dir, cfl_sensemap, "R")
# L1-wavelet regularized
cmd_flags = "-S -e -R W:3:0:%f -i 100" % l1
cmd = "%s pics %s %s %s %s" % (
BIN_BART, cmd_flags, ks_dir, sense_dir, img_dir,)
subprocess.check_call(["bash", "-c", cmd])
bart_recon = load_recon(img_dir, sense_dir)
return bart_recon
def load_recon(file, file_sensemap):
bart_recon = np.squeeze(cfl.read(file))
if bart_recon.ndim == 2:
bart_recon = np.transpose(bart_recon, [1, 0])
bart_recon = np.expand_dims(bart_recon, axis=0)
bart_recon = np.expand_dims(bart_recon, axis=-1)
if bart_recon.ndim == 3:
bart_recon = np.transpose(bart_recon, [2, 1, 0])
bart_recon = np.expand_dims(bart_recon, axis=-1)
return bart_recon
def calculate_metrics(output, bart_test, truth):
cs_psnr = []
cs_nrmse = []
cs_ssim = []
output_psnr = []
output_nrmse = []
output_ssim = []
psnr, nrmse, ssim = metrics.compute_all(truth, output, sos_axis=-1)
output_psnr.append(psnr)
output_nrmse.append(nrmse)
output_ssim.append(ssim)
def _create_summary(sense_place, ks_place, im_out_place, im_truth_place):
sensemap = sense_place
ks_input = ks_place
image_output = im_out_place
image_truth = im_truth_place
image_input = tf_util.model_transpose(ks_input, sensemap)
mask_input = tf_util.kspace_mask(ks_input, dtype=tf.complex64)
ks_output = tf_util.model_forward(image_output, sensemap)
ks_truth = tf_util.model_forward(image_truth, sensemap)
with tf.name_scope("input-output-truth"):
summary_input = tf_util.sumofsq(ks_input, keep_dims=True)
summary_output = tf_util.sumofsq(ks_output, keep_dims=True)
summary_truth = tf_util.sumofsq(ks_truth, keep_dims=True)
summary_fft = tf.log(
tf.concat((summary_input, summary_output,
summary_truth), axis=2) + 1e-6
)
tf.summary.image("kspace", summary_fft,
max_outputs=FLAGS.num_summary_image)
summary_input = tf_util.sumofsq(image_input, keep_dims=True)
summary_output = tf_util.sumofsq(image_output, keep_dims=True)
summary_truth = tf_util.sumofsq(image_truth, keep_dims=True)
summary_image = tf.concat(
(summary_input, summary_output, summary_truth), axis=2
)
tf.summary.image("image", summary_image,
max_outputs=FLAGS.num_summary_image)
with tf.name_scope("truth"):
summary_truth_real = tf.reduce_sum(
image_truth, axis=-1, keep_dims=True)
summary_truth_real = tf.real(summary_truth_real)
tf.summary.image(
"image_real", summary_truth_real, max_outputs=FLAGS.num_summary_image
)
with tf.name_scope("mask"):
summary_mask = tf_util.sumofsq(mask_input, keep_dims=True)
tf.summary.image("mask", summary_mask,
max_outputs=FLAGS.num_summary_image)
with tf.name_scope("sensemap"):
summary_map = tf.slice(
tf.abs(sensemap), [0, 0, 0, 0, 0], [-1, -1, -1, 1, -1])
summary_map = tf.transpose(summary_map, [0, 1, 4, 2, 3])
summary_map = tf.reshape(
summary_map, [tf.shape(summary_map)[0],
tf.shape(summary_map)[1], -1]
)
summary_map = tf.expand_dims(summary_map, axis=-1)
tf.summary.image("image", summary_map,
max_outputs=FLAGS.num_summary_image)
if __name__ == "__main__":
tf.app.run()