-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaverage_errors.py
executable file
·652 lines (453 loc) · 24.1 KB
/
average_errors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import os
import glob
from itertools import product
import numpy as np
import nibabel as nib
import pandas as pd
import json
######## should be in macapype or even in nipype....
from nipype.interfaces.afni.base import (AFNICommandBase,
AFNICommandOutputSpec,
isdefined)
from nipype.utils.filemanip import split_filename as split_f
from nipype.interfaces.base import (CommandLine, CommandLineInputSpec,
TraitedSpec, traits, File)
# NwarpApplyPriors
class NwarpApplyPriorsInputSpec(CommandLineInputSpec):
in_file = traits.Either(
File(exists=True),
traits.List(File(exists=True)),
mandatory=True,
argstr='-source %s',
desc='the name of the dataset to be warped '
'can be multiple datasets')
warp = traits.String(
desc='the name of the warp dataset. '
'multiple warps can be concatenated (make sure they exist)',
argstr='-nwarp %s',
mandatory=True)
inv_warp = traits.Bool(
desc='After the warp specified in \'-nwarp\' is computed, invert it',
argstr='-iwarp')
master = traits.File(
exists=True,
desc='the name of the master dataset, which defines the output grid',
argstr='-master %s')
interp = traits.Enum(
'wsinc5',
'NN',
'nearestneighbour',
'nearestneighbor',
'linear',
'trilinear',
'cubic',
'tricubic',
'quintic',
'triquintic',
desc='defines interpolation method to use during warp',
argstr='-interp %s',
usedefault=True)
ainterp = traits.Enum(
'NN',
'nearestneighbour',
'nearestneighbor',
'linear',
'trilinear',
'cubic',
'tricubic',
'quintic',
'triquintic',
'wsinc5',
desc='specify a different interpolation method than might '
'be used for the warp',
argstr='-ainterp %s')
out_file = traits.Either(
File(),
traits.List(File()),
mandatory=True,
argstr='-prefix %s',
desc='output image file name')
short = traits.Bool(
desc='Write output dataset using 16-bit short integers, rather than '
'the usual 32-bit floats.',
argstr='-short')
quiet = traits.Bool(
desc='don\'t be verbose :(', argstr='-quiet', xor=['verb'])
verb = traits.Bool(
desc='be extra verbose :)', argstr='-verb', xor=['quiet'])
class NwarpApplyPriorsOutputSpec(AFNICommandOutputSpec):
out_file = traits.Either(
File(),
traits.List(File()))
class NwarpApplyPriors(AFNICommandBase):
"""
Over Wrap of NwarpApply (afni node) in order to generate files in the right
node directory (instead of in the original data directory, or the script
directory as is now)
Modifications are made over inputs and outputs
"""
_cmd = '3dNwarpApply'
input_spec = NwarpApplyPriorsInputSpec
output_spec = NwarpApplyPriorsOutputSpec
def _format_arg(self, name, spec, value):
import os
import shutil
cur_dir = os.getcwd()
new_value = []
if name == 'in_file':
if isinstance(value, list):
print("A list for in_file")
for in_file in value:
print(in_file)
# copy en local
shutil.copy(in_file, cur_dir)
new_value.append(os.path.join(cur_dir, in_file))
else:
print("A single file for in_file {}".format(value))
if os.path.split(value)[1] not in os.listdir(cur_dir):
shutil.copy(value, cur_dir)
path, fname, ext = split_f(value)
new_value = os.path.join(cur_dir, fname + ext)
print(new_value)
else:
new_value = value
value = new_value
elif name == 'out_file':
if isinstance(value, list):
print("A list for out_file")
print("out_file:", value)
for out_file in value[:1]:
print(out_file)
path, fname, ext = split_f(out_file)
new_value.append(os.path.join(cur_dir,
fname + "_Nwarp" + ext))
for i in range(1, 4):
new_value.append(os.path.join(cur_dir,
"tmp_%02d.nii.gz" % i))
print("after out_file:", new_value)
else:
print("A single file for out_file {}".format(value))
path, fname, ext = split_f(value)
new_value = os.path.abspath(fname + "_Nwarp" + ext)
print(new_value)
self.new_value = new_value
value = new_value
return super(NwarpApplyPriors, self)._format_arg(name, spec, value)
def _list_outputs(self):
outputs = self.output_spec().get()
if isdefined(self.new_value):
outputs['out_file'] = self.new_value
print(outputs['out_file'])
return outputs
##################################################
# applying transfos
import nipype.interfaces.afni as afni
import nipype.interfaces.fsl as fsl
from nipype.interfaces.niftyreg import regutils
def apply_aladin(in_file, ref_file, trans_file):
apply_crop_aladdin = regutils.RegResample()
apply_crop_aladdin.inputs.flo_file = in_file
apply_crop_aladdin.inputs.ref_file = ref_file
apply_crop_aladdin.inputs.trans_file = trans_file
print(apply_crop_aladdin.cmdline)
output_file = apply_crop_aladdin.run().outputs.out_file
print(output_file)
return output_file
def apply_crop_z(in_file, brainsize):
apply_crop_z = fsl.RobustFOV()
apply_crop_z.inputs.in_file = in_file
apply_crop_z.inputs.brainsize = brainsize
output_file = apply_crop_z.run().outputs.out_roi
print(output_file)
return output_file
def apply_crop(in_file, crop_args):
apply_crop = fsl.ExtractROI()
apply_crop.inputs.in_file = in_file
apply_crop.inputs.args = crop_args
output_file = apply_crop.run().outputs.roi_file
print(output_file)
return output_file
def apply_xfm(in_file, xfm_file, ref_file):
applyxfm = fsl.ApplyXFM()
applyxfm.inputs.in_file = in_file
applyxfm.inputs.in_matrix_file = xfm_file
applyxfm.inputs.reference = ref_file
applyxfm.inputs.apply_xfm = True
output_file = applyxfm.run().outputs.out_file
print(output_file)
return output_file
def apply_warp(in_file, aff_file, warp_file):
align_masks = NwarpApplyPriors()
#align_masks = afni.NwarpApply()
align_masks.inputs.in_file = in_file
align_masks.inputs.out_file = in_file
align_masks.inputs.interp = "NN"
align_masks.inputs.args = "-overwrite"
align_masks.inputs.master = aff_file
align_masks.inputs.warp = warp_file
print(align_masks.cmdline)
output_file = align_masks.run().outputs.out_file
print(output_file)
return output_file
def alllineate_afni_template_space(in_file, ref_img_file, transfo_file):
# align_NMT
align_NMT = afni.Allineate()
align_NMT.inputs.final_interpolation = "nearestneighbour"
align_NMT.inputs.overwrite = True
align_NMT.inputs.outputtype = "NIFTI_GZ"
align_NMT.inputs.in_file = in_file
align_NMT.inputs.reference = ref_img_file
align_NMT.inputs.in_matrix = transfo_file
print(align_NMT.cmdline)
output_file = align_NMT.run().outputs.out_file
print(output_file)
return output_file
def apply_warp_and_1D(in_file, ref_file, warp_file, transfo_file):
align_masks = NwarpApplyPriors()
#align_masks = afni.NwarpApply()
align_masks.inputs.in_file = in_file
align_masks.inputs.out_file = in_file
align_masks.inputs.interp = "NN"
align_masks.inputs.args = "-overwrite"
align_masks.inputs.master = ref_file
align_masks.inputs.warp = warp_file + " " + transfo_file
print(align_masks.cmdline)
output_file = align_masks.run().outputs.out_file
print(output_file)
return output_file
####################################################################################################################################################################################
# averaging
def check_alt_wf(eval_path, sub, ses, analysis_name, tissue_type, error_type, alt_wf_roots = ["macapype_orig_{}", "macapype_indiv_params_{}"]):
alt_wf_names = [alt_wf_root.format(analysis_name) for alt_wf_root in alt_wf_roots]
for alt_wf_name in alt_wf_names:
in_file = os.path.join(eval_path,"{}_{}_manual-{}{}_{}.nii.gz".format(sub, ses, alt_wf_name, tissue_type, error_type))
if os.path.exists(in_file):
print("Found {} for alt {}".format(in_file, alt_wf_name))
cur_workflow_name = alt_wf_name
return cur_workflow_name
return False
def average_errors(data_path, working_path, subjects, sessions, dataset_dir, ref_img_file, template_aladin_file, crop_file,
analysis_name = "spm_native", suf = "T1w_res_ROI_restore_masked_corrected", error_type = "erreurMartin", NMT_version = "NMT_v2", keep_indiv = False, local_transfos = False):
workflow_name = "macapype_crop_aladin_{}".format(analysis_name)
if analysis_name == "ants_t1":
pipeline_name = "full_T1_ants_subpipes"
short_pipe_name = "short_preparation_T1_pipe"
seg_pipe_name = "brain_segment_from_mask_T1_pipe"
elif analysis_name == "ants":
pipeline_name = "full_ants_subpipes"
short_pipe_name = "short_preparation_pipe"
seg_pipe_name = "brain_segment_from_mask_pipe"
elif analysis_name == "spm_native":
pipeline_name = "full_spm_subpipes"
short_pipe_name = "short_preparation_pipe"
dataset_path = os.path.join(data_path, dataset_dir)
eval_path = os.path.join(dataset_path, "derivatives/new_evaluation_results/")
assert os.path.exists(eval_path), "Error, {} not found".format(eval_path)
res_dir = "average_errors_" + analysis_name
if keep_indiv == False:
res_dir += "_noindiv"
res_path = os.path.join(eval_path, res_dir)
try:
os.makedirs(res_path)
except OSError:
print("res_path {} already exists".format(res_path))
os.chdir(res_path)
print(os.getcwd())
if keep_indiv:
alt_wf_roots = ["macapype_orig_{}", "macapype_indiv_params_{}"]
else:
alt_wf_roots = ["macapype_orig_{}"]
ref_img = nib.load(ref_img_file)
ref_img_data = ref_img.get_fdata()
for tissue_type in ["_"]:
list_avail_ses = []
for sub, ses in product(subjects, sessions):
print(("**** running average_errors_ants for {} {} and {}".format(sub, ses, analysis_name)))
cur_workflow_name = workflow_name
in_file = os.path.join(eval_path,"{}_{}_manual-{}{}_{}.nii.gz".format(sub, ses, cur_workflow_name, tissue_type, error_type))
if not os.path.exists(in_file):
print ("changing in_file={} to alternative wf names (orig or indiv_params)".format(in_file))
cur_workflow_name = check_alt_wf(eval_path=eval_path, sub=sub, ses=ses, analysis_name=analysis_name, tissue_type=tissue_type, error_type=error_type, alt_wf_roots=alt_wf_roots)
if cur_workflow_name==0:
print( "error, {} does not exists in orig or indiv_params".format(in_file))
continue
else:
print( "found {} for in_file".format(cur_workflow_name))
in_file = os.path.join(eval_path,"{}_{}_manual-{}{}_{}.nii.gz".format(sub, ses, cur_workflow_name, tissue_type, error_type))
print("cur_workflow_name = {}".format(cur_workflow_name))
#### reg_transform if crop_aladin
if cur_workflow_name.startswith("macapype_indiv_params_"):
print("skipping reg_aladin aff step")
indiv_crop_file = os.path.join(dataset_path,crop_file)
assert os.path.exists(indiv_crop_file), "{} not found".format(indiv_crop_file)
data_dict = json.load(open(indiv_crop_file))
assert "sub-" + sub in data_dict.keys(), "{}".format(data_dict.keys())
assert "ses-" + ses in data_dict["sub-" + sub].keys(), "{}".format(data_dict["sub-" + sub].keys())
indiv_crop = data_dict["sub-" + sub]["ses-" + ses]
print(indiv_crop)
assert 'crop_T1' in indiv_crop.keys(), "Error, could not find crop_T1 in {}".format(indiv_crop.keys())
assert 'args' in indiv_crop['crop_T1'].keys(), "Error, could not find args in {}".format(indiv_crop['crop_T1'].keys())
cropped_file = apply_crop(in_file, indiv_crop['crop_T1']['args'])
fname_root = "sub-{}_ses-{}*_T1w_roi_{}".format(sub, ses, suf)
elif cur_workflow_name.startswith("macapype_crop_aladin_") or cur_workflow_name.startswith("macapype_orig_"):
if local_transfos:
## copying in local
glob_cmd = os.path.join(working_path, cur_workflow_name, "only_transfos", "crop_aladin_T1", "sub-{sub}_ses-{ses}*_T1w_aff.txt".format(ses=ses, sub=sub))
else:
## copying full analysis
glob_cmd = os.path.join(working_path, cur_workflow_name, pipeline_name, short_pipe_name, "_session_{ses}_subject_{sub}/crop_aladin_T1/*sub-{sub}_ses-{ses}*_T1w_aff.txt".format(ses=ses, sub=sub))
# reg_transform
aladdin_files = glob.glob(glob_cmd)
assert len(aladdin_files) == 1, "Error with {}, glob({})".format(aladdin_files, glob_cmd)
aladdin_file = aladdin_files[0]
assert os.path.exists(aladdin_file), "Error, {} could not be found".format(aladdin_file)
reg_file = apply_aladin(in_file=in_file, ref_file=template_aladin_file, trans_file=aladdin_file)
print(reg_file)
cropped_file = apply_crop_z(in_file=reg_file, brainsize = brainsize)
print(cropped_file)
if analysis_name == "spm_native":
fname_root = "sub-{}_ses-{}*_T1w_res_ROI_{}".format(sub, ses, suf)
elif analysis_name in ['ants', 'ants_t1']:
fname_root = "sub-{}_ses-{}*_T1w_res_ROI_{}".format(sub, ses, suf)
if analysis_name == "spm_native":
glob_cmd = os.path.join(working_path, "{}/full_spm_subpipes/_session_{}_subject_{}/reg/*{}.xfm".format(cur_workflow_name, ses, sub, fname_root))
print(glob_cmd)
xfm_files = glob.glob(glob_cmd)
assert len(xfm_files)==1, "Error with {}".format(glob_cmd)
xfm_file=xfm_files[0]
assert os.path.exists(xfm_file)
warped_file = apply_xfm(cropped_file, xfm_file, ref_img_file)
assert os.path.exists(warped_file)
print (warped_file)
elif analysis_name in ['ants', 'ants_t1']:
########################################################################### new version
if NMT_version == "animal_warp":
## copying full analysis
if local_transfos:
# copying in local
NMT_subject_align_path = os.path.join(working_path, cur_workflow_name, "only_transfos", "NMT_subject_align".format(ses, sub))
else:
NMT_subject_align_path = os.path.join(working_path, cur_workflow_name, pipeline_name, seg_pipe_name, "register_NMT_pipe/_session_{}_subject_{}/NMT_subject_align/aw_results".format(ses, sub))
## Nwarp and then allineate
## target file
#glob_cmd = os.path.join(NMT_subject_align_path, "*{}_ns.nii.gz".format(fname_root))
#aff_files = glob.glob(glob_cmd)
#assert len(aff_files) == 1, "Error with {}, glob({})".format(aff_files, glob_cmd)
#aff_file = aff_files[0]
#assert os.path.exists(aff_file), "Error, {} could not be found".format(aff_file)
transfo_files = glob.glob(os.path.join(NMT_subject_align_path, "*{}_composite_linear_to_template.1D".format(fname_root)))
assert len(transfo_files) == 1, "Error with {}".format(transfo_files)
transfo_file = transfo_files[0]
assert os.path.exists(transfo_file), "Error, {} could not be found".format(transfo_file)
# warped file
warp_files = glob.glob(os.path.join(NMT_subject_align_path, "*{}_shft_WARP.nii.gz".format(fname_root)))
assert len(warp_files) == 1, "Error with {}".format(os.path.join(NMT_subject_align_path, "*{}_shft_WARP.nii.gz".format(fname_root)))
warp_file = warp_files[0]
assert os.path.exists(warp_file), "Error, {} could not be found".format(os.path.join(NMT_subject_align_path, "*{}_shft_WARP.nii.gz".format(fname_root)))
warped_file = apply_warp_and_1D(cropped_file, ref_file=ref_img_file, warp_file= warp_file, transfo_file = transfo_file)
print(warped_file)
## allineate file
#warped_allineate_file = alllineate_afni_template_space(in_file=warped_file, ref_img_file=ref_img_file , transfo_file=transfo_file )
#print(warped_allineate_file)
################################################################################## old version
elif NMT_version == "NMT_v2.0":
NMT_subject_align_path = os.path.join(working_path, cur_workflow_name, pipeline_name, seg_pipe_name, "register_NMT_pipe/_session_{}_subject_{}/NMT_subject_align".format(ses, sub))
glob_cmd = os.path.join(NMT_subject_align_path, "*{}_affine.nii.gz".format(fname_root))
aff_files = glob.glob(glob_cmd)
assert len(aff_files) == 1, "Error with {}, glob({})".format(aff_files, glob_cmd)
aff_file = aff_files[0]
assert os.path.exists(aff_file), "Error, {} could not be found".format(aff_file)
warp_files = glob.glob(os.path.join(NMT_subject_align_path, "*{}_WARP.nii.gz".format(fname_root)))
assert len(warp_files) == 1, "Error with {}".format(warp_files)
warp_file = warp_files[0]
assert os.path.exists(warp_file), "Error, {} could not be found".format(warp_file)
warped_file = apply_warp(cropped_file, aff_file, warp_file)
print(warped_file)
# allineate
transfo_files = glob.glob(os.path.join(NMT_subject_align_path, "*{}_composite_linear_to_NMT.1D".format(fname_root)))
assert len(transfo_files) == 1, "Error with {}".format(transfo_files)
transfo_file = transfo_files[0]
assert os.path.exists(transfo_file), "Error, {} could not be found".format(transfo_file)
warped_allineate_file = alllineate_afni_template_space(in_file=warped_file, ref_img_file=ref_img_file , transfo_file=transfo_file )
print(warped_allineate_file)
else:
print("Error, NMT_version should be either animal_warp or NMT_v2.0")
exit(-1)
list_avail_ses.append((sub, ses, cur_workflow_name))
print("************************** Counting errors for all subjects *******************************************************************")
#### counting errors
count_shape = ref_img_data.shape
if len(count_shape) == 4:
count_shape = count_shape[:3]
count_errors_data = np.zeros(shape=count_shape, dtype=float)
print(count_errors_data.shape)
for sub, ses, cur_workflow_name in list_avail_ses:
print(sub, ses, analysis_name, error_type)
if analysis_name in ["ants", "ants_t1"]:
if cur_workflow_name.startswith("macapype_indiv_params_"):
norm_file = os.path.abspath("{}_{}_manual-{}{}_{}_roi_Nwarp.nii.gz".format(sub, ses, cur_workflow_name, tissue_type, error_type))
else:
norm_file= os.path.abspath("{}_{}_manual-{}{}_{}_res_ROI_Nwarp.nii.gz".format(sub, ses, cur_workflow_name, tissue_type, error_type))
elif analysis_name == "spm_native":
if cur_workflow_name.startswith("macapype_indiv_params_"):
#TODO
norm_file = os.path.abspath("{}_{}_manual-{}{}_{}_roi_flirt.nii.gz".format(sub, ses, cur_workflow_name, tissue_type, error_type))
else:
norm_file = os.path.abspath("{}_{}_manual-{}{}_{}_res_ROI_flirt.nii.gz".format(sub, ses, cur_workflow_name, tissue_type, error_type))
assert os.path.exists(norm_file), "error with file {}".format(norm_file)
warped = nib.load(norm_file).get_fdata()
count_errors_data += warped
print(np.unique(count_errors_data))
nib.save(nib.Nifti1Image(count_errors_data, header = ref_img.header, affine = ref_img.affine),os.path.join(res_path, "count{}_manual-{}_{}.nii.gz".format(tissue_type, analysis_name, error_type)))
nib.save(nib.Nifti1Image(count_errors_data / float(len(list_avail_ses)), header = ref_img.header, affine = ref_img.affine),os.path.join(res_path, "percent{}_manual-{}_{}.nii.gz".format(tissue_type, analysis_name, error_type)))
df_avail_ses = pd.DataFrame(list_avail_ses, columns = ["subject", "Session", "Workflow"])
df_avail_ses.to_csv(os.path.join(res_path, "avail_wf_{}.csv".format(analysis_name)))
#######################################################################################################################################################################################################
# main
from define_variables import data_path, working_path, subjects, sessions, dataset_dirs, brainsize, analysis_names
from define_variables import tab_ref_img, template_aladin_file, tabs_suf, NMT_version, crop_file, local_transfos
if __name__ == '__main__':
dataset_dir = dataset_dirs[0]
#analysis_name= "ants"
#average_errors(
#data_path=data_path,
#working_path=working_path,
#subjects=subjects,
#sessions=sessions,
#dataset_dir=dataset_dir,
#ref_img_file=tab_ref_img[analysis_name],
#template_aladin_file=template_aladin_file,
#crop_file=crop_file,
#analysis_name=analysis_name,
#suf = tabs_suf[analysis_name],
#NMT_version=NMT_version,
#keep_indiv = False,
#local_transfos = local_transfos)
analysis_name= "ants_t1"
average_errors(
data_path=data_path,
working_path=working_path,
subjects=subjects,
sessions=sessions,
dataset_dir=dataset_dir,
ref_img_file=tab_ref_img[analysis_name],
#template_aladin_file="/home/meunier.d/data_macapype/NMT_v2.0_asym/NMT_v20_asym.nii.gz", # this is a bug, should be corrected
template_aladin_file=template_aladin_file,
crop_file=crop_file,
analysis_name=analysis_name,
suf = tabs_suf[analysis_name],
NMT_version=NMT_version, keep_indiv = False,
local_transfos=local_transfos)
#analysis_name= "spm_native"
#average_errors(
#data_path=data_path,
#working_path=working_path,
#subjects=subjects,
#sessions=sessions,
#dataset_dir=dataset_dir,
#ref_img_file=tab_ref_img[analysis_name],
#template_aladin_file=template_aladin_file,
#crop_file=crop_file,
#analysis_name=analysis_name,
#suf = tabs_suf[analysis_name],
#NMT_version=NMT_version, keep_indiv = False, local_transfos = False)