-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_multiclass_seg.py
executable file
·98 lines (57 loc) · 3.22 KB
/
eval_multiclass_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# -*- coding: utf-8 -*-
"""
Created on Tue May 11 10:11:05 2021
@author: essmaile
modif David Meunier 07/01/2022
"""
#### Importation --------------------------------------------------------------------------------------------------------
import nibabel as nib
import numpy as np
import os
from metrics import intraclass_correlation, perf_measure_seg_multimodale, coff_kappa, coff_dice, coff_jaccard, erreurs_martin, carte_erreur_martin, erreurs_martin_multiclasse
def compute_all_multiclass_metrics (seg_auto,seg_ref, pref = "img_") :
assert os.path.exists(seg_auto)
assert os.path.exists(seg_ref)
img_set_auto = nib.load(seg_auto)
data_set_auto = np.array(np.round(img_set_auto.get_data()), dtype = 'int')
data_set_ref = np.array(np.round(nib.load(seg_ref).get_data()), dtype = 'int')
x, y, z = data_set_ref.shape
# convertir array 3D to 1D
auto = data_set_auto.reshape(-1)
ref = data_set_ref.reshape(-1)
assert len(auto) == len(ref), "error with orig shapes {} and {}".format(data_set_auto.shape, data_set_ref.shape)
# Nombre total des voxels
N = len(auto)
ICC=0
ICC = intraclass_correlation (seg_auto, seg_ref)
print("ICC : ", ICC)
VP, FP, VN, FN = perf_measure_seg_multimodale(auto, ref)
print("vrai_positif : ",VP)
print("faux_positif : ",FP)
print("vrai_négatif : ",VN)
print("faux_négatif : ",FN)
kappa = coff_kappa(VP, FP, VN, FN, N)
print("kappa : ", kappa)
dice = coff_dice(VP, FP, VN, FN)
print("dice : ", dice)
JC = coff_jaccard(VP, FP, VN, FN)
print("jaccard : ", JC)
LCE, GCE, Emin = erreurs_martin_multiclasse(auto, ref)
carteEmin=Emin.reshape(x, y, z)
imaEmin = nib.Nifti1Image(carteEmin, img_set_auto.affine)
res_file = pref + '_erreurMartin.nii.gz'
nib.save(imaEmin, res_file)
return [ICC, VP, FP, VN, FN, kappa, dice, JC, LCE, GCE]
#### Main ---------------------------------------------------------------------------------------------------------------
if __name__ == '__main__':
#### data préparation ---------------------------------------------------------------------------------------------------
# téléchargement des données NIFTI
#Segmentation_auto = nib.load("/hpc/meca/users/essamlali.a/manuel_segmentation/sinia_seg_ref/sub-032155_ses-001_run-1_brain_mask_T2.nii.gz")
#Segmentation_ref = nib.load("/hpc/meca/users/essamlali.a/manuel_segmentation/sinia_seg_ref/sub-032155_ses-001_run-1_brain_mask_T2.nii.gz")
#seg_auto = nib.load("D:/Stage_INT/Script_metriques/Cube1.nii.gz")
#seg_ref = nib.load("D:/Stage_INT/Script_metriques/Cube3.nii.gz")
#seg_auto = "/hpc/crise/meunier.d/Data/Baboon_Adults_Cerimed_Adrien/derivatives/semimanual_segmentation/sub-Arthur/ses-01/anat/sub-Arthur_ses-01_space-orig_desc-brain_dseg.nii.gz"
#seg_ref = "/hpc/crise/meunier.d/Data/Baboon_Adults_Cerimed_Adrien/derivatives/macapype_ants/sub-Arthur/ses-01/anat/sub-Arthur_ses-01_space-orig_desc-brain_dseg.nii.gz"
seg_auto = "/Users/olivier/Downloads/autoCrop.nii.gz"
seg_ref = "/Users/olivier/Downloads/manualCrop.nii.gz"
compute_all_multiclass_metrics (seg_auto,seg_ref)