-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
276 lines (233 loc) · 8.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
import os
from torchmetrics import JaccardIndex, Dice
from models.tiny_segformer.segmed import SegMed
from utils.losses import DiceFocalLoss
from data.brats import BRATSDataset2D
from torchvision.transforms import Compose, Resize
from torch.amp import GradScaler, autocast
import matplotlib.pyplot as plt
from tqdm import tqdm
# Configuration
class Config:
data_dir = "/home/magnus/Datasets/Images/MedicalDecathlon/Task01_BrainTumour"
dataset_json_path = (
"/home/magnus/Datasets/Images/MedicalDecathlon/Task01_BrainTumour/dataset.json"
)
save_dir = "checkpoints"
model_name = "UNet"
# Model parameters
in_channels = 1 # FLAIR is single-channel
num_classes = 4
img_size = 128
# Training parameters
epochs = 100
batch_size = 64
lr = 4e-4
weight_decay = 1e-6
val_split = 0.2
num_workers = 8
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
def visualize_predictions(images, labels, outputs):
# Convert images, labels, and outputs to numpy arrays
plt.switch_backend("Agg")
outputs = torch.argmax(outputs, dim=1)
images = images.cpu().numpy()
labels = labels.cpu().numpy()
outputs = outputs.cpu().numpy()
for i in range(images.shape[0]):
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
axes[0].imshow(images[i, 0, :, :], cmap="gray")
axes[0].axis("off")
axes[0].set_title("Image")
axes[1].imshow(labels[i, :, :], cmap="tab10", vmin=0, vmax=3)
axes[1].axis("off")
axes[1].set_title("Label")
axes[2].imshow(outputs[i, :, :], cmap="tab10", vmin=0, vmax=3)
axes[2].axis("off")
axes[2].set_title("Prediction")
plt.savefig(f"predictions/prediction_{i}.png")
plt.close()
scaler = GradScaler()
def train():
# Initialize dataset and dataloader
train_dataset = BRATSDataset2D(
data_dir=Config.data_dir,
dataset_json_path=Config.dataset_json_path,
modality_to_use="FLAIR",
slice_direction="axial",
transform=Compose(
[
Resize((Config.img_size, Config.img_size)),
]
),
split="train",
)
val_dataset = BRATSDataset2D(
data_dir=Config.data_dir,
dataset_json_path=Config.dataset_json_path,
modality_to_use="FLAIR",
slice_direction="axial",
transform=Compose(
[
Resize((Config.img_size, Config.img_size)),
]
),
split="test",
)
train_loader = DataLoader(
train_dataset,
batch_size=Config.batch_size,
shuffle=True,
num_workers=Config.num_workers,
pin_memory=True,
prefetch_factor=2,
)
val_loader = DataLoader(
val_dataset,
batch_size=Config.batch_size,
shuffle=False,
num_workers=Config.num_workers,
pin_memory=True,
)
# Initialize model, loss, and optimizer
model = SegMed(
img_size=Config.img_size,
in_chans=Config.in_channels,
num_classes=Config.num_classes,
)
criterion = DiceFocalLoss(lambda_dice=1, lambda_focal=2)
# criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(
model.parameters(), lr=Config.lr, weight_decay=Config.weight_decay
)
lr_scheduler = optim.lr_scheduler.SequentialLR(
optimizer,
schedulers=[
optim.lr_scheduler.LinearLR(
optimizer,
start_factor=0.01, # Start at 4e-6 (4e-4 * 0.01 = 4e-6)
end_factor=1.0, # End at 4e-4
total_iters=int(
0.1 * Config.epochs * len(train_loader)
), # 10% of total steps for warmup
),
optim.lr_scheduler.PolynomialLR(
optimizer,
total_iters=int(
0.9 * Config.epochs * len(train_loader)
), # Remaining 90% of steps
power=2.0,
),
],
milestones=[
int(0.1 * Config.epochs * len(train_loader))
], # Switch from warmup to decay at 10% of training
)
# Metrics
train_jaccard = JaccardIndex(
num_classes=Config.num_classes, task="multiclass", ignore_index=0
)
val_jaccard = JaccardIndex(
num_classes=Config.num_classes, task="multiclass", ignore_index=0
)
train_dice = Dice(num_classes=Config.num_classes, ignore_index=0)
val_dice = Dice(num_classes=Config.num_classes, ignore_index=0)
# Move model and metrics to device
model = model.to(Config.device)
# Initialize best metrics
best_jaccard = 0.0
best_epoch = 0
GRAD_CLIP = 1.0
# Training loop
for epoch in range(1, Config.epochs + 1):
print(f"Epoch {epoch}/{Config.epochs}")
print("------------------------")
train_jaccard.reset()
train_dice.reset()
val_jaccard.reset()
val_dice.reset()
# Training phase
model.train()
train_loss = 0.0
viz_counter = 0
train_pbar = tqdm(train_loader, desc=f"Training Epoch {epoch}", leave=True)
for batch_idx, (images, labels) in enumerate(train_pbar):
images, labels = images.to(Config.device), labels.to(Config.device)
# Forward pass
with autocast(device_type=Config.device.type, dtype=torch.bfloat16):
outputs = model(images)
loss = criterion(outputs, labels)
# Backward pass and optimize
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), GRAD_CLIP)
scaler.step(optimizer)
scaler.update()
lr_scheduler.step()
# Calculate metrics
train_loss += loss.item()
preds = torch.argmax(outputs, dim=1)
train_jaccard.update(preds.cpu(), labels.cpu())
train_dice.update(preds.cpu(), labels.cpu())
# Update progress bar
train_pbar.set_postfix({"loss": f"{loss.item():.4f}"})
avg_train_loss = train_loss / len(train_loader)
avg_train_jaccard = train_jaccard.compute()
avg_train_dice = train_dice.compute()
print(f"\nTrain Loss: {avg_train_loss:.4f}")
print(f"Train Jaccard Index: {avg_train_jaccard:.4f}")
print(f"Train Dice Coefficient: {avg_train_dice:.4f}")
train_jaccard.reset()
train_dice.reset()
# Validation phase
model.eval()
val_loss = 0.0
with torch.no_grad():
val_pbar = tqdm(val_loader, desc="Validation", leave=True)
for images, labels in val_pbar:
viz_counter += 1
images, labels = images.to(Config.device), labels.to(Config.device)
# Forward pass
outputs = model(images)
# Compute loss
loss = criterion(outputs, labels)
val_loss += loss.item()
# Calculate metrics
preds = torch.argmax(outputs, dim=1)
val_jaccard.update(preds.cpu(), labels.cpu())
val_dice.update(preds.cpu(), labels.cpu())
# Update progress bar
val_pbar.set_postfix({"loss": f"{loss.item():.4f}"})
# Visualize predictions
if viz_counter % 40 == 0:
visualize_predictions(images, labels, outputs)
avg_val_loss = val_loss / len(val_loader)
avg_val_jaccard = val_jaccard.compute()
avg_val_dice = val_dice.compute()
print(f"Validation Loss: {avg_val_loss:.4f}")
print(f"Validation Jaccard Index: {avg_val_jaccard:.4f}")
print(f"Validation Dice Coefficient: {avg_val_dice:.4f}")
val_jaccard.reset()
val_dice.reset()
# Save best model
if avg_val_jaccard > best_jaccard:
best_jaccard = avg_val_jaccard
best_epoch = epoch
save_model(model, epoch, avg_train_jaccard, avg_val_jaccard)
print(
f"Best model achieved at epoch {best_epoch} with Jaccard Index: {best_jaccard:.4f}"
)
return model
def save_model(model, epoch, train_jaccard, val_jaccard):
os.makedirs(Config.save_dir, exist_ok=True)
filename = f"{Config.model_name}_epoch{epoch}_train_jaccard{train_jaccard:.4f}_val_jaccard{val_jaccard:.4f}.pth"
path = os.path.join(Config.save_dir, filename)
torch.save(model.state_dict(), path)
print(f"Saved model to {path}")
if __name__ == "__main__":
train()