-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathT_closeness_code.cs
208 lines (179 loc) · 7.3 KB
/
T_closeness_code.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
using System;
using System.Collections.Generic;
using System.Data;
using System.Linq;
using System.Windows.Forms;
namespace DataArmor
{
internal class T_closeness_code
{
public DataTable dataTable = new DataTable();
public List<string> SA = new List<string>();
double T;
public List<string> QID = new List<string>();
public T_closeness_code(DataTable data, double t, List<string> sa, List<string> qid)
{
dataTable = data;
T = t;
SA = sa;
QID = qid;
List<DataTable> PartitionNeedSwapping = new List<DataTable>();
List<DataTable> ResultPartition = new List<DataTable>();
List<DataTable> PartitionsAfterSwapping = new List<DataTable>();
foreach (string s in SA)
{
List<DataTable> partitions = PartitionData(dataTable, QID);
foreach (DataTable partition in partitions)
{
List<string> relativeFrequencies = RelativeFrequencies(partition, s);
double emd = EMD(OverallDistribution(dataTable, relativeFrequencies, s), relativeFrequencies);
if (emd <= T)
{
ResultPartition.Add(partition);
}
else
{
PartitionNeedSwapping.Add(partition);
}
}
PartitionsAfterSwapping = Swapping(PartitionNeedSwapping, s);
DataTable mergedTable = new DataTable();
if (PartitionsAfterSwapping.Count > 1)
{
mergedTable = mergeTable.MergeTables(PartitionsAfterSwapping);
ResultPartition.Add(mergedTable);
}
else if (PartitionsAfterSwapping.Count == 1)
{
ResultPartition.Add(PartitionsAfterSwapping[0]);
}
dataTable = mergeTable.MergeTables(ResultPartition);
}
}
public static List<DataTable> PartitionData(DataTable dataTable, List<string> QID)
{
List<DataTable> partitions = new List<DataTable>();
Dictionary<string, DataTable> partitionTables = new Dictionary<string, DataTable>();
foreach (DataRow row in dataTable.Rows)
{
string key = GenerateKey(row, QID);
if (!partitionTables.ContainsKey(key))
{
DataTable partitionTable = dataTable.Clone();
partitionTables.Add(key, partitionTable);
partitions.Add(partitionTable);
}
partitionTables[key].ImportRow(row);
}
return partitions;
}
// Helper method to generate a key based on QID values for a row
public static string GenerateKey(DataRow row, List<string> QID)
{
List<string> keyValues = new List<string>();
foreach (string column in QID)
{
string value = row[column].ToString();
if (value != "******")
{
keyValues.Add(value);
}
}
return string.Join("\t", keyValues);
}
public static double[] OverallDistribution(DataTable dataTable, List<string> sensitiveValues, string sa)
{
int totalCount = 0;
List<string> SensitiveValuesOnALL = new List<string>();
foreach (DataRow row in dataTable.Rows)
{
totalCount++;
object fieldValueObject = row[sa];
string value = fieldValueObject.ToString();
if (sensitiveValues.Contains(value))
{
SensitiveValuesOnALL.Add(value);
}
}
var groupedData = SensitiveValuesOnALL
.GroupBy(x => x)
.OrderBy(g => sensitiveValues.IndexOf(g.Key)); // Sort the groups based on the order in sensitiveValues
int uniqueValueCount = groupedData.Count();
double[] histogramRatios = new double[uniqueValueCount];
int i = 0;
foreach (var group in groupedData)
{
int count = group.Count();
histogramRatios[i] = count / (double)totalCount;
histogramRatios[i] = Math.Round(histogramRatios[i], 1);
i++;
}
return histogramRatios;
}
public static List<string> RelativeFrequencies(DataTable partitions, string sa)
{
List<string> sensitiveValues = new List<string>();
foreach (DataRow row in partitions.Rows)
{
object fieldValueObject = row[sa];
string value = fieldValueObject.ToString(); ;
sensitiveValues.Add(value);
}
return sensitiveValues;
}
public static double EMD(double[] overallDistribution, List<string> relativeFrequencies)
{
double[] overallHistogram = overallDistribution;
double[] relativeHistogram = Histogram(relativeFrequencies);
if (overallHistogram.Length != relativeHistogram.Length)
{
throw new ArgumentException("Distributions must have the same length.");
}
// Calculate the Earth Mover's Distance
double emd = 0.0;
for (int i = 0; i < overallHistogram.Length; i++)
{
emd += Math.Abs(overallHistogram[i] - relativeHistogram[i]);
}
return emd;
}
public static double[] Histogram(List<string> data)
{
var groupedData = data.GroupBy(x => x);
int uniqueValueCount = groupedData.Count();
double totalCount = data.Count;
double[] histogramRatios = new double[uniqueValueCount];
int i = 0;
foreach (var group in groupedData)
{
int count = group.Count();
histogramRatios[i] = count / totalCount;
histogramRatios[i] = Math.Round(histogramRatios[i], 1);
i++;
}
return histogramRatios;
}
public static List<DataTable> Swapping(List<DataTable> Partitions, string sa)
{
for (int i = 0; i < Partitions.Count - 1; i += 2)
{
DataTable currentPartition = Partitions[i];
DataTable nextPartition = Partitions[i + 1];
if (nextPartition.Rows.Count >= 2)
{
DataRow currentRow = currentPartition.Rows[0];
string value1 = currentRow.Field<string>(sa);
DataRow nextRow = nextPartition.Rows[1];
string value2 = nextRow.Field<string>(sa);
/*
object[] currentRowValues = currentRow.ItemArray;
object[] nextRowValues = nextRow.ItemArray;*/
MessageBox.Show($"{value1} Swapped with {value2} to achieve t-closeness");
currentRow[sa] = value2;
nextRow[sa] = value1;
}
}
return Partitions;
}
}
}