diff --git a/doc/pub/week39/html/week39-bs.html b/doc/pub/week39/html/week39-bs.html index fc85670c..673e744e 100644 --- a/doc/pub/week39/html/week39-bs.html +++ b/doc/pub/week39/html/week39-bs.html @@ -377,7 +377,27 @@ ("Analysis of Hartree-Fock equations and Koopman's theorem", 2, None, - 'analysis-of-hartree-fock-equations-and-koopman-s-theorem')]} + 'analysis-of-hartree-fock-equations-and-koopman-s-theorem'), + ('Hartree-Fock in second quantization and stability of HF ' + 'solution', + 2, + None, + 'hartree-fock-in-second-quantization-and-stability-of-hf-solution'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ('New operators', 2, None, 'new-operators'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Showing that $|\\tilde{c}\\rangle= |c'\\rangle$", + 2, + None, + 'showing-that-tilde-c-rangle-c-rangle'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem')]} end of tocinfo --> @@ -501,6 +521,19 @@
  • Analysis of Hartree-Fock equations and Koopman's theorem
  • Analysis of Hartree-Fock equations and Koopman's theorem
  • Analysis of Hartree-Fock equations and Koopman's theorem
  • +
  • Hartree-Fock in second quantization and stability of HF solution
  • +
  • Thouless' theorem
  • +
  • Thouless' theorem
  • +
  • Thouless' theorem
  • +
  • Thouless' theorem
  • +
  • Thouless' theorem
  • +
  • New operators
  • +
  • Thouless' theorem
  • +
  • Showing that \( |\tilde{c}\rangle= |c'\rangle \)
  • +
  • Thouless' theorem
  • +
  • Thouless' theorem
  • +
  • Thouless' theorem
  • +
  • Thouless' theorem
  • @@ -554,9 +587,9 @@

    Week 39, September 23-27, 2
  • Friday:
  • Lecture Material: These slides, handwritten notes
  • Sixth exercise set at https://github.com/ManyBodyPhysics/FYS4480/blob/master/doc/Exercises/2024/ExercisesWeek39.pdf
  • @@ -2148,6 +2181,242 @@

    + +

    Hartree-Fock in second quantization and stability of HF solution

    + +

    We wish now to derive the Hartree-Fock equations using our second-quantized formalism and study the stability of the equations. +Our ansatz for the ground state of the system is approximated as (this is our representation of a Slater determinant in second quantization) +

    +$$ +|\Phi_0\rangle = |c\rangle = a^{\dagger}_i a^{\dagger}_j \dots a^{\dagger}_l|0\rangle. +$$ + +

    We wish to determine \( \hat{u}^{HF} \) so that +\( E_0^{HF}= \langle c|\hat{H}| c\rangle \) becomes a local minimum. +

    + +

    In our analysis here we will need Thouless' theorem, which states that +an arbitrary Slater determinant \( |c'\rangle \) which is not orthogonal to a determinant +\( | c\rangle ={\displaystyle\prod_{i=1}^{n}} +a_{\alpha_{i}}^{\dagger}|0\rangle \), can be written as +

    +$$ +|c'\rangle=exp\left\{\sum_{a>F}\sum_{i\le F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle +$$ + + + +

    Thouless' theorem

    + +

    Let us give a simple proof of Thouless' theorem. The theorem states that we can make a linear combination av particle-hole excitations with respect to a given reference state \( \vert c\rangle \). With this linear combination, we can make a new Slater determinant \( \vert c'\rangle \) which is not orthogonal to +\( \vert c\rangle \), that is +

    +$$ +\langle c|c'\rangle \ne 0. +$$ + +

    To show this we need some intermediate steps. The exponential product of two operators \( \exp{\hat{A}}\times\exp{\hat{B}} \) is equal to \( \exp{(\hat{A}+\hat{B})} \) only if the two operators commute, that is

    +$$ +[\hat{A},\hat{B}] = 0. +$$ + + + +

    Thouless' theorem

    + +

    If the operators do not commute, we need to resort to the Baker-Campbell-Hauersdorf. This relation states that

    +$$ +\exp{\hat{C}}=\exp{\hat{A}}\exp{\hat{B}}, +$$ + +

    with

    +$$ +\hat{C}=\hat{A}+\hat{B}+\frac{1}{2}[\hat{A},\hat{B}]+\frac{1}{12}[[\hat{A},\hat{B}],\hat{B}]-\frac{1}{12}[[\hat{A},\hat{B}],\hat{A}]+\dots +$$ + + + +

    Thouless' theorem

    + +

    From these relations, we note that +in our expression for \( |c'\rangle \) we have commutators of the type +

    +$$ +[a_{a}^{\dagger}a_{i},a_{b}^{\dagger}a_{j}], +$$ + +

    and it is easy to convince oneself that these commutators, or higher powers thereof, are all zero. This means that we can write out our new representation of a Slater determinant as

    +$$ +|c'\rangle=exp\left\{\sum_{a>F}\sum_{i\le F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}+\left(\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right)^2+\dots\right\}| c\rangle +$$ + + + +

    Thouless' theorem

    + +

    We note that

    +$$ +\prod_{i}\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\sum_{b>F}C_{bi}a_{b}^{\dagger}a_{i}| c\rangle =0, +$$ + +

    and all higher-order powers of these combinations of creation and annihilation operators disappear +due to the fact that \( (a_i)^n| c\rangle =0 \) when \( n > 1 \). This allows us to rewrite the expression for \( |c'\rangle \) as +

    +$$ +|c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle, +$$ + +

    which we can rewrite as

    +$$ +|c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle. +$$ + + + +

    Thouless' theorem

    + +

    The last equation can be written as

    +$$ +\begin{align} +|c'\rangle&=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle=\left(1+\sum_{a>F}C_{ai_1}a_{a}^{\dagger}a_{i_1}\right)a^{\dagger}_{i_1} +\label{_auto3}\\ +& \times\left(1+\sum_{a>F}C_{ai_2}a_{a}^{\dagger}a_{i_2}\right)a^{\dagger}_{i_2} \dots |0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle. +\label{_auto4} +\end{align} +$$ + + + +

    New operators

    + +

    If we define a new creation operator

    +$$ +\begin{equation} +b^{\dagger}_{i}=a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}, \label{eq:newb} +\end{equation} +$$ + +

    we have

    +$$ +|c'\rangle=\prod_{i}b^{\dagger}_{i}|0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle, +$$ + +

    meaning that the new representation of the Slater determinant in second quantization, \( |c'\rangle \), looks like our previous ones. However, this representation is not general enough since we have a restriction on the sum over single-particle states in Eq. \eqref{eq:newb}. The single-particle states have all to be above the Fermi level.

    + + +

    Thouless' theorem

    + +

    The question then is whether we can construct a general representation of a Slater determinant with a creation operator

    +$$ +\tilde{b}^{\dagger}_{i}=\sum_{p}f_{ip}a_{p}^{\dagger}, +$$ + +

    where \( f_{ip} \) is a matrix element of a unitary matrix which transforms our creation and annihilation operators +\( a^{\dagger} \) and \( a \) to \( \tilde{b}^{\dagger} \) and \( \tilde{b} \). These new operators define a new representation of a Slater determinant as +

    +$$ +|\tilde{c}\rangle=\prod_{i}\tilde{b}^{\dagger}_{i}|0\rangle. +$$ + + + +

    Showing that \( |\tilde{c}\rangle= |c'\rangle \)

    + +

    We need to show that \( |\tilde{c}\rangle= |c'\rangle \). We need also to assume that the new state +is not orthogonal to \( |c\rangle \), that is \( \langle c| \tilde{c}\rangle \ne 0 \). From this it follows that +

    +$$ +\langle c| \tilde{c}\rangle=\langle 0| a_{i_n}\dots a_{i_1}\left(\sum_{p=i_1}^{i_n}f_{i_1p}a_{p}^{\dagger} \right)\left(\sum_{q=i_1}^{i_n}f_{i_2q}a_{q}^{\dagger} \right)\dots \left(\sum_{t=i_1}^{i_n}f_{i_nt}a_{t}^{\dagger} \right)|0\rangle, +$$ + +

    which is nothing but the determinant \( det(f_{ip}) \) which we can, using the intermediate normalization condition, +normalize to one, that is +

    +$$ +det(f_{ip})=1, +$$ + +

    meaning that \( f \) has an inverse defined as (since we are dealing with orthogonal, and in our case unitary as well, transformations)

    +$$ +\sum_{k} f_{ik}f^{-1}_{kj} = \delta_{ij}, +$$ + +

    and

    +$$ +\sum_{j} f^{-1}_{ij}f_{jk} = \delta_{ik}. +$$ + + + +

    Thouless' theorem

    + +

    Using these relations we can then define the linear combination of creation (and annihilation as well) +operators as +

    +$$ +\sum_{i}f^{-1}_{ki}\tilde{b}^{\dagger}_{i}=\sum_{i}f^{-1}_{ki}\sum_{p=i_1}^{\infty}f_{ip}a_{p}^{\dagger}=a_{k}^{\dagger}+\sum_{i}\sum_{p=i_{n+1}}^{\infty}f^{-1}_{ki}f_{ip}a_{p}^{\dagger}. +$$ + +

    Defining

    +$$ +c_{kp}=\sum_{i \le F}f^{-1}_{ki}f_{ip}, +$$ + +

    we can redefine

    +$$ +a_{k}^{\dagger}+\sum_{i}\sum_{p=i_{n+1}}^{\infty}f^{-1}_{ki}f_{ip}a_{p}^{\dagger}=a_{k}^{\dagger}+\sum_{p=i_{n+1}}^{\infty}c_{kp}a_{p}^{\dagger}=b_k^{\dagger}, +$$ + +

    our starting point.

    + + +

    Thouless' theorem

    + +

    We have shown that our general representation of a Slater determinant

    +$$ +|\tilde{c}\rangle=\prod_{i}\tilde{b}^{\dagger}_{i}|0\rangle=|c'\rangle=\prod_{i}b^{\dagger}_{i}|0\rangle, +$$ + +

    with

    +$$ +b_k^{\dagger}=a_{k}^{\dagger}+\sum_{p=i_{n+1}}^{\infty}c_{kp}a_{p}^{\dagger}. +$$ + + + +

    Thouless' theorem

    + +

    This means that we can actually write an ansatz for the ground state of the system as a linear combination of +terms which contain the ansatz itself \( |c\rangle \) with an admixture from an infinity of one-particle-one-hole states. The latter has important consequences when we wish to interpret the Hartree-Fock equations and their stability. We can rewrite the new representation as +

    +$$ +|c'\rangle = |c\rangle+|\delta c\rangle, +$$ + +

    where \( |\delta c\rangle \) can now be interpreted as a small variation. If we approximate this term with +contributions from one-particle-one-hole (1p-1h) states only, we arrive at +

    +$$ +|c'\rangle = \left(1+\sum_{ai}\delta C_{ai}a_{a}^{\dagger}a_i\right)|c\rangle. +$$ + + + +

    Thouless' theorem

    + +

    In our derivation of the Hartree-Fock equations we have shown that

    +$$ +\langle \delta c| \hat{H} | c\rangle =0, +$$ + +

    which means that we have to satisfy

    +$$ +\langle c|\sum_{ai}\delta C_{ai}\left\{a_{a}^{\dagger}a_i\right\} \hat{H} | c\rangle =0. +$$ + +

    With this as a background, we are now ready to study the stability of the Hartree-Fock equations. +This is the topic for week 40. +

    diff --git a/doc/pub/week39/html/week39-reveal.html b/doc/pub/week39/html/week39-reveal.html index 7d370438..76c5e3f7 100644 --- a/doc/pub/week39/html/week39-reveal.html +++ b/doc/pub/week39/html/week39-reveal.html @@ -221,9 +221,11 @@

    Week 39, September 23-27, 2024

  • Friday:
  • Lecture Material: These slides, handwritten notes
  • @@ -2117,6 +2119,304 @@

    Analysis of Ha +
    +

    Hartree-Fock in second quantization and stability of HF solution

    + +

    We wish now to derive the Hartree-Fock equations using our second-quantized formalism and study the stability of the equations. +Our ansatz for the ground state of the system is approximated as (this is our representation of a Slater determinant in second quantization) +

    +

     
    +$$ +|\Phi_0\rangle = |c\rangle = a^{\dagger}_i a^{\dagger}_j \dots a^{\dagger}_l|0\rangle. +$$ +

     
    + +

    We wish to determine \( \hat{u}^{HF} \) so that +\( E_0^{HF}= \langle c|\hat{H}| c\rangle \) becomes a local minimum. +

    + +

    In our analysis here we will need Thouless' theorem, which states that +an arbitrary Slater determinant \( |c'\rangle \) which is not orthogonal to a determinant +\( | c\rangle ={\displaystyle\prod_{i=1}^{n}} +a_{\alpha_{i}}^{\dagger}|0\rangle \), can be written as +

    +

     
    +$$ +|c'\rangle=exp\left\{\sum_{a>F}\sum_{i\le F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle +$$ +

     
    +

    + +
    +

    Thouless' theorem

    + +

    Let us give a simple proof of Thouless' theorem. The theorem states that we can make a linear combination av particle-hole excitations with respect to a given reference state \( \vert c\rangle \). With this linear combination, we can make a new Slater determinant \( \vert c'\rangle \) which is not orthogonal to +\( \vert c\rangle \), that is +

    +

     
    +$$ +\langle c|c'\rangle \ne 0. +$$ +

     
    + +

    To show this we need some intermediate steps. The exponential product of two operators \( \exp{\hat{A}}\times\exp{\hat{B}} \) is equal to \( \exp{(\hat{A}+\hat{B})} \) only if the two operators commute, that is

    +

     
    +$$ +[\hat{A},\hat{B}] = 0. +$$ +

     
    +

    + +
    +

    Thouless' theorem

    + +

    If the operators do not commute, we need to resort to the Baker-Campbell-Hauersdorf. This relation states that

    +

     
    +$$ +\exp{\hat{C}}=\exp{\hat{A}}\exp{\hat{B}}, +$$ +

     
    + +

    with

    +

     
    +$$ +\hat{C}=\hat{A}+\hat{B}+\frac{1}{2}[\hat{A},\hat{B}]+\frac{1}{12}[[\hat{A},\hat{B}],\hat{B}]-\frac{1}{12}[[\hat{A},\hat{B}],\hat{A}]+\dots +$$ +

     
    +

    + +
    +

    Thouless' theorem

    + +

    From these relations, we note that +in our expression for \( |c'\rangle \) we have commutators of the type +

    +

     
    +$$ +[a_{a}^{\dagger}a_{i},a_{b}^{\dagger}a_{j}], +$$ +

     
    + +

    and it is easy to convince oneself that these commutators, or higher powers thereof, are all zero. This means that we can write out our new representation of a Slater determinant as

    +

     
    +$$ +|c'\rangle=exp\left\{\sum_{a>F}\sum_{i\le F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}+\left(\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right)^2+\dots\right\}| c\rangle +$$ +

     
    +

    + +
    +

    Thouless' theorem

    + +

    We note that

    +

     
    +$$ +\prod_{i}\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\sum_{b>F}C_{bi}a_{b}^{\dagger}a_{i}| c\rangle =0, +$$ +

     
    + +

    and all higher-order powers of these combinations of creation and annihilation operators disappear +due to the fact that \( (a_i)^n| c\rangle =0 \) when \( n > 1 \). This allows us to rewrite the expression for \( |c'\rangle \) as +

    +

     
    +$$ +|c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle, +$$ +

     
    + +

    which we can rewrite as

    +

     
    +$$ +|c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle. +$$ +

     
    +

    + +
    +

    Thouless' theorem

    + +

    The last equation can be written as

    +

     
    +$$ +\begin{align} +|c'\rangle&=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle=\left(1+\sum_{a>F}C_{ai_1}a_{a}^{\dagger}a_{i_1}\right)a^{\dagger}_{i_1} +\tag{10}\\ +& \times\left(1+\sum_{a>F}C_{ai_2}a_{a}^{\dagger}a_{i_2}\right)a^{\dagger}_{i_2} \dots |0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle. +\tag{11} +\end{align} +$$ +

     
    +

    + +
    +

    New operators

    + +

    If we define a new creation operator

    +

     
    +$$ +\begin{equation} +b^{\dagger}_{i}=a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}, \tag{12} +\end{equation} +$$ +

     
    + +

    we have

    +

     
    +$$ +|c'\rangle=\prod_{i}b^{\dagger}_{i}|0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle, +$$ +

     
    + +

    meaning that the new representation of the Slater determinant in second quantization, \( |c'\rangle \), looks like our previous ones. However, this representation is not general enough since we have a restriction on the sum over single-particle states in Eq. (12). The single-particle states have all to be above the Fermi level.

    +
    + +
    +

    Thouless' theorem

    + +

    The question then is whether we can construct a general representation of a Slater determinant with a creation operator

    +

     
    +$$ +\tilde{b}^{\dagger}_{i}=\sum_{p}f_{ip}a_{p}^{\dagger}, +$$ +

     
    + +

    where \( f_{ip} \) is a matrix element of a unitary matrix which transforms our creation and annihilation operators +\( a^{\dagger} \) and \( a \) to \( \tilde{b}^{\dagger} \) and \( \tilde{b} \). These new operators define a new representation of a Slater determinant as +

    +

     
    +$$ +|\tilde{c}\rangle=\prod_{i}\tilde{b}^{\dagger}_{i}|0\rangle. +$$ +

     
    +

    + +
    +

    Showing that \( |\tilde{c}\rangle= |c'\rangle \)

    + +

    We need to show that \( |\tilde{c}\rangle= |c'\rangle \). We need also to assume that the new state +is not orthogonal to \( |c\rangle \), that is \( \langle c| \tilde{c}\rangle \ne 0 \). From this it follows that +

    +

     
    +$$ +\langle c| \tilde{c}\rangle=\langle 0| a_{i_n}\dots a_{i_1}\left(\sum_{p=i_1}^{i_n}f_{i_1p}a_{p}^{\dagger} \right)\left(\sum_{q=i_1}^{i_n}f_{i_2q}a_{q}^{\dagger} \right)\dots \left(\sum_{t=i_1}^{i_n}f_{i_nt}a_{t}^{\dagger} \right)|0\rangle, +$$ +

     
    + +

    which is nothing but the determinant \( det(f_{ip}) \) which we can, using the intermediate normalization condition, +normalize to one, that is +

    +

     
    +$$ +det(f_{ip})=1, +$$ +

     
    + +

    meaning that \( f \) has an inverse defined as (since we are dealing with orthogonal, and in our case unitary as well, transformations)

    +

     
    +$$ +\sum_{k} f_{ik}f^{-1}_{kj} = \delta_{ij}, +$$ +

     
    + +

    and

    +

     
    +$$ +\sum_{j} f^{-1}_{ij}f_{jk} = \delta_{ik}. +$$ +

     
    +

    + +
    +

    Thouless' theorem

    + +

    Using these relations we can then define the linear combination of creation (and annihilation as well) +operators as +

    +

     
    +$$ +\sum_{i}f^{-1}_{ki}\tilde{b}^{\dagger}_{i}=\sum_{i}f^{-1}_{ki}\sum_{p=i_1}^{\infty}f_{ip}a_{p}^{\dagger}=a_{k}^{\dagger}+\sum_{i}\sum_{p=i_{n+1}}^{\infty}f^{-1}_{ki}f_{ip}a_{p}^{\dagger}. +$$ +

     
    + +

    Defining

    +

     
    +$$ +c_{kp}=\sum_{i \le F}f^{-1}_{ki}f_{ip}, +$$ +

     
    + +

    we can redefine

    +

     
    +$$ +a_{k}^{\dagger}+\sum_{i}\sum_{p=i_{n+1}}^{\infty}f^{-1}_{ki}f_{ip}a_{p}^{\dagger}=a_{k}^{\dagger}+\sum_{p=i_{n+1}}^{\infty}c_{kp}a_{p}^{\dagger}=b_k^{\dagger}, +$$ +

     
    + +

    our starting point.

    +
    + +
    +

    Thouless' theorem

    + +

    We have shown that our general representation of a Slater determinant

    +

     
    +$$ +|\tilde{c}\rangle=\prod_{i}\tilde{b}^{\dagger}_{i}|0\rangle=|c'\rangle=\prod_{i}b^{\dagger}_{i}|0\rangle, +$$ +

     
    + +

    with

    +

     
    +$$ +b_k^{\dagger}=a_{k}^{\dagger}+\sum_{p=i_{n+1}}^{\infty}c_{kp}a_{p}^{\dagger}. +$$ +

     
    +

    + +
    +

    Thouless' theorem

    + +

    This means that we can actually write an ansatz for the ground state of the system as a linear combination of +terms which contain the ansatz itself \( |c\rangle \) with an admixture from an infinity of one-particle-one-hole states. The latter has important consequences when we wish to interpret the Hartree-Fock equations and their stability. We can rewrite the new representation as +

    +

     
    +$$ +|c'\rangle = |c\rangle+|\delta c\rangle, +$$ +

     
    + +

    where \( |\delta c\rangle \) can now be interpreted as a small variation. If we approximate this term with +contributions from one-particle-one-hole (1p-1h) states only, we arrive at +

    +

     
    +$$ +|c'\rangle = \left(1+\sum_{ai}\delta C_{ai}a_{a}^{\dagger}a_i\right)|c\rangle. +$$ +

     
    +

    + +
    +

    Thouless' theorem

    + +

    In our derivation of the Hartree-Fock equations we have shown that

    +

     
    +$$ +\langle \delta c| \hat{H} | c\rangle =0, +$$ +

     
    + +

    which means that we have to satisfy

    +

     
    +$$ +\langle c|\sum_{ai}\delta C_{ai}\left\{a_{a}^{\dagger}a_i\right\} \hat{H} | c\rangle =0. +$$ +

     
    + +

    With this as a background, we are now ready to study the stability of the Hartree-Fock equations. +This is the topic for week 40. +

    +
    + diff --git a/doc/pub/week39/html/week39-solarized.html b/doc/pub/week39/html/week39-solarized.html index f59dd4de..8da60c25 100644 --- a/doc/pub/week39/html/week39-solarized.html +++ b/doc/pub/week39/html/week39-solarized.html @@ -404,7 +404,27 @@ ("Analysis of Hartree-Fock equations and Koopman's theorem", 2, None, - 'analysis-of-hartree-fock-equations-and-koopman-s-theorem')]} + 'analysis-of-hartree-fock-equations-and-koopman-s-theorem'), + ('Hartree-Fock in second quantization and stability of HF ' + 'solution', + 2, + None, + 'hartree-fock-in-second-quantization-and-stability-of-hf-solution'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ('New operators', 2, None, 'new-operators'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Showing that $|\\tilde{c}\\rangle= |c'\\rangle$", + 2, + None, + 'showing-that-tilde-c-rangle-c-rangle'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem')]} end of tocinfo --> @@ -464,9 +484,9 @@

    Week 39, September 23-27, 2024

  • Friday:
  • Lecture Material: These slides, handwritten notes
  • Sixth exercise set at https://github.com/ManyBodyPhysics/FYS4480/blob/master/doc/Exercises/2024/ExercisesWeek39.pdf
  • @@ -2039,6 +2059,242 @@

    Analysis of Ha +









    +

    Hartree-Fock in second quantization and stability of HF solution

    + +

    We wish now to derive the Hartree-Fock equations using our second-quantized formalism and study the stability of the equations. +Our ansatz for the ground state of the system is approximated as (this is our representation of a Slater determinant in second quantization) +

    +$$ +|\Phi_0\rangle = |c\rangle = a^{\dagger}_i a^{\dagger}_j \dots a^{\dagger}_l|0\rangle. +$$ + +

    We wish to determine \( \hat{u}^{HF} \) so that +\( E_0^{HF}= \langle c|\hat{H}| c\rangle \) becomes a local minimum. +

    + +

    In our analysis here we will need Thouless' theorem, which states that +an arbitrary Slater determinant \( |c'\rangle \) which is not orthogonal to a determinant +\( | c\rangle ={\displaystyle\prod_{i=1}^{n}} +a_{\alpha_{i}}^{\dagger}|0\rangle \), can be written as +

    +$$ +|c'\rangle=exp\left\{\sum_{a>F}\sum_{i\le F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle +$$ + + +









    +

    Thouless' theorem

    + +

    Let us give a simple proof of Thouless' theorem. The theorem states that we can make a linear combination av particle-hole excitations with respect to a given reference state \( \vert c\rangle \). With this linear combination, we can make a new Slater determinant \( \vert c'\rangle \) which is not orthogonal to +\( \vert c\rangle \), that is +

    +$$ +\langle c|c'\rangle \ne 0. +$$ + +

    To show this we need some intermediate steps. The exponential product of two operators \( \exp{\hat{A}}\times\exp{\hat{B}} \) is equal to \( \exp{(\hat{A}+\hat{B})} \) only if the two operators commute, that is

    +$$ +[\hat{A},\hat{B}] = 0. +$$ + + +









    +

    Thouless' theorem

    + +

    If the operators do not commute, we need to resort to the Baker-Campbell-Hauersdorf. This relation states that

    +$$ +\exp{\hat{C}}=\exp{\hat{A}}\exp{\hat{B}}, +$$ + +

    with

    +$$ +\hat{C}=\hat{A}+\hat{B}+\frac{1}{2}[\hat{A},\hat{B}]+\frac{1}{12}[[\hat{A},\hat{B}],\hat{B}]-\frac{1}{12}[[\hat{A},\hat{B}],\hat{A}]+\dots +$$ + + +









    +

    Thouless' theorem

    + +

    From these relations, we note that +in our expression for \( |c'\rangle \) we have commutators of the type +

    +$$ +[a_{a}^{\dagger}a_{i},a_{b}^{\dagger}a_{j}], +$$ + +

    and it is easy to convince oneself that these commutators, or higher powers thereof, are all zero. This means that we can write out our new representation of a Slater determinant as

    +$$ +|c'\rangle=exp\left\{\sum_{a>F}\sum_{i\le F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}+\left(\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right)^2+\dots\right\}| c\rangle +$$ + + +









    +

    Thouless' theorem

    + +

    We note that

    +$$ +\prod_{i}\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\sum_{b>F}C_{bi}a_{b}^{\dagger}a_{i}| c\rangle =0, +$$ + +

    and all higher-order powers of these combinations of creation and annihilation operators disappear +due to the fact that \( (a_i)^n| c\rangle =0 \) when \( n > 1 \). This allows us to rewrite the expression for \( |c'\rangle \) as +

    +$$ +|c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle, +$$ + +

    which we can rewrite as

    +$$ +|c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle. +$$ + + +









    +

    Thouless' theorem

    + +

    The last equation can be written as

    +$$ +\begin{align} +|c'\rangle&=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle=\left(1+\sum_{a>F}C_{ai_1}a_{a}^{\dagger}a_{i_1}\right)a^{\dagger}_{i_1} +\label{_auto3}\\ +& \times\left(1+\sum_{a>F}C_{ai_2}a_{a}^{\dagger}a_{i_2}\right)a^{\dagger}_{i_2} \dots |0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle. +\label{_auto4} +\end{align} +$$ + + +









    +

    New operators

    + +

    If we define a new creation operator

    +$$ +\begin{equation} +b^{\dagger}_{i}=a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}, \label{eq:newb} +\end{equation} +$$ + +

    we have

    +$$ +|c'\rangle=\prod_{i}b^{\dagger}_{i}|0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle, +$$ + +

    meaning that the new representation of the Slater determinant in second quantization, \( |c'\rangle \), looks like our previous ones. However, this representation is not general enough since we have a restriction on the sum over single-particle states in Eq. \eqref{eq:newb}. The single-particle states have all to be above the Fermi level.

    + +









    +

    Thouless' theorem

    + +

    The question then is whether we can construct a general representation of a Slater determinant with a creation operator

    +$$ +\tilde{b}^{\dagger}_{i}=\sum_{p}f_{ip}a_{p}^{\dagger}, +$$ + +

    where \( f_{ip} \) is a matrix element of a unitary matrix which transforms our creation and annihilation operators +\( a^{\dagger} \) and \( a \) to \( \tilde{b}^{\dagger} \) and \( \tilde{b} \). These new operators define a new representation of a Slater determinant as +

    +$$ +|\tilde{c}\rangle=\prod_{i}\tilde{b}^{\dagger}_{i}|0\rangle. +$$ + + +









    +

    Showing that \( |\tilde{c}\rangle= |c'\rangle \)

    + +

    We need to show that \( |\tilde{c}\rangle= |c'\rangle \). We need also to assume that the new state +is not orthogonal to \( |c\rangle \), that is \( \langle c| \tilde{c}\rangle \ne 0 \). From this it follows that +

    +$$ +\langle c| \tilde{c}\rangle=\langle 0| a_{i_n}\dots a_{i_1}\left(\sum_{p=i_1}^{i_n}f_{i_1p}a_{p}^{\dagger} \right)\left(\sum_{q=i_1}^{i_n}f_{i_2q}a_{q}^{\dagger} \right)\dots \left(\sum_{t=i_1}^{i_n}f_{i_nt}a_{t}^{\dagger} \right)|0\rangle, +$$ + +

    which is nothing but the determinant \( det(f_{ip}) \) which we can, using the intermediate normalization condition, +normalize to one, that is +

    +$$ +det(f_{ip})=1, +$$ + +

    meaning that \( f \) has an inverse defined as (since we are dealing with orthogonal, and in our case unitary as well, transformations)

    +$$ +\sum_{k} f_{ik}f^{-1}_{kj} = \delta_{ij}, +$$ + +

    and

    +$$ +\sum_{j} f^{-1}_{ij}f_{jk} = \delta_{ik}. +$$ + + +









    +

    Thouless' theorem

    + +

    Using these relations we can then define the linear combination of creation (and annihilation as well) +operators as +

    +$$ +\sum_{i}f^{-1}_{ki}\tilde{b}^{\dagger}_{i}=\sum_{i}f^{-1}_{ki}\sum_{p=i_1}^{\infty}f_{ip}a_{p}^{\dagger}=a_{k}^{\dagger}+\sum_{i}\sum_{p=i_{n+1}}^{\infty}f^{-1}_{ki}f_{ip}a_{p}^{\dagger}. +$$ + +

    Defining

    +$$ +c_{kp}=\sum_{i \le F}f^{-1}_{ki}f_{ip}, +$$ + +

    we can redefine

    +$$ +a_{k}^{\dagger}+\sum_{i}\sum_{p=i_{n+1}}^{\infty}f^{-1}_{ki}f_{ip}a_{p}^{\dagger}=a_{k}^{\dagger}+\sum_{p=i_{n+1}}^{\infty}c_{kp}a_{p}^{\dagger}=b_k^{\dagger}, +$$ + +

    our starting point.

    + +









    +

    Thouless' theorem

    + +

    We have shown that our general representation of a Slater determinant

    +$$ +|\tilde{c}\rangle=\prod_{i}\tilde{b}^{\dagger}_{i}|0\rangle=|c'\rangle=\prod_{i}b^{\dagger}_{i}|0\rangle, +$$ + +

    with

    +$$ +b_k^{\dagger}=a_{k}^{\dagger}+\sum_{p=i_{n+1}}^{\infty}c_{kp}a_{p}^{\dagger}. +$$ + + +









    +

    Thouless' theorem

    + +

    This means that we can actually write an ansatz for the ground state of the system as a linear combination of +terms which contain the ansatz itself \( |c\rangle \) with an admixture from an infinity of one-particle-one-hole states. The latter has important consequences when we wish to interpret the Hartree-Fock equations and their stability. We can rewrite the new representation as +

    +$$ +|c'\rangle = |c\rangle+|\delta c\rangle, +$$ + +

    where \( |\delta c\rangle \) can now be interpreted as a small variation. If we approximate this term with +contributions from one-particle-one-hole (1p-1h) states only, we arrive at +

    +$$ +|c'\rangle = \left(1+\sum_{ai}\delta C_{ai}a_{a}^{\dagger}a_i\right)|c\rangle. +$$ + + +









    +

    Thouless' theorem

    + +

    In our derivation of the Hartree-Fock equations we have shown that

    +$$ +\langle \delta c| \hat{H} | c\rangle =0, +$$ + +

    which means that we have to satisfy

    +$$ +\langle c|\sum_{ai}\delta C_{ai}\left\{a_{a}^{\dagger}a_i\right\} \hat{H} | c\rangle =0. +$$ + +

    With this as a background, we are now ready to study the stability of the Hartree-Fock equations. +This is the topic for week 40. +

    © 1999-2024, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license diff --git a/doc/pub/week39/html/week39.html b/doc/pub/week39/html/week39.html index 347eafab..1e4848f9 100644 --- a/doc/pub/week39/html/week39.html +++ b/doc/pub/week39/html/week39.html @@ -481,7 +481,27 @@ ("Analysis of Hartree-Fock equations and Koopman's theorem", 2, None, - 'analysis-of-hartree-fock-equations-and-koopman-s-theorem')]} + 'analysis-of-hartree-fock-equations-and-koopman-s-theorem'), + ('Hartree-Fock in second quantization and stability of HF ' + 'solution', + 2, + None, + 'hartree-fock-in-second-quantization-and-stability-of-hf-solution'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ('New operators', 2, None, 'new-operators'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Showing that $|\\tilde{c}\\rangle= |c'\\rangle$", + 2, + None, + 'showing-that-tilde-c-rangle-c-rangle'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem'), + ("Thouless' theorem", 2, None, 'thouless-theorem')]} end of tocinfo --> @@ -541,9 +561,9 @@

    Week 39, September 23-27, 2024

  • Friday:
  • Lecture Material: These slides, handwritten notes
  • Sixth exercise set at https://github.com/ManyBodyPhysics/FYS4480/blob/master/doc/Exercises/2024/ExercisesWeek39.pdf
  • @@ -2116,6 +2136,242 @@

    Analysis of Ha +









    +

    Hartree-Fock in second quantization and stability of HF solution

    + +

    We wish now to derive the Hartree-Fock equations using our second-quantized formalism and study the stability of the equations. +Our ansatz for the ground state of the system is approximated as (this is our representation of a Slater determinant in second quantization) +

    +$$ +|\Phi_0\rangle = |c\rangle = a^{\dagger}_i a^{\dagger}_j \dots a^{\dagger}_l|0\rangle. +$$ + +

    We wish to determine \( \hat{u}^{HF} \) so that +\( E_0^{HF}= \langle c|\hat{H}| c\rangle \) becomes a local minimum. +

    + +

    In our analysis here we will need Thouless' theorem, which states that +an arbitrary Slater determinant \( |c'\rangle \) which is not orthogonal to a determinant +\( | c\rangle ={\displaystyle\prod_{i=1}^{n}} +a_{\alpha_{i}}^{\dagger}|0\rangle \), can be written as +

    +$$ +|c'\rangle=exp\left\{\sum_{a>F}\sum_{i\le F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle +$$ + + +









    +

    Thouless' theorem

    + +

    Let us give a simple proof of Thouless' theorem. The theorem states that we can make a linear combination av particle-hole excitations with respect to a given reference state \( \vert c\rangle \). With this linear combination, we can make a new Slater determinant \( \vert c'\rangle \) which is not orthogonal to +\( \vert c\rangle \), that is +

    +$$ +\langle c|c'\rangle \ne 0. +$$ + +

    To show this we need some intermediate steps. The exponential product of two operators \( \exp{\hat{A}}\times\exp{\hat{B}} \) is equal to \( \exp{(\hat{A}+\hat{B})} \) only if the two operators commute, that is

    +$$ +[\hat{A},\hat{B}] = 0. +$$ + + +









    +

    Thouless' theorem

    + +

    If the operators do not commute, we need to resort to the Baker-Campbell-Hauersdorf. This relation states that

    +$$ +\exp{\hat{C}}=\exp{\hat{A}}\exp{\hat{B}}, +$$ + +

    with

    +$$ +\hat{C}=\hat{A}+\hat{B}+\frac{1}{2}[\hat{A},\hat{B}]+\frac{1}{12}[[\hat{A},\hat{B}],\hat{B}]-\frac{1}{12}[[\hat{A},\hat{B}],\hat{A}]+\dots +$$ + + +









    +

    Thouless' theorem

    + +

    From these relations, we note that +in our expression for \( |c'\rangle \) we have commutators of the type +

    +$$ +[a_{a}^{\dagger}a_{i},a_{b}^{\dagger}a_{j}], +$$ + +

    and it is easy to convince oneself that these commutators, or higher powers thereof, are all zero. This means that we can write out our new representation of a Slater determinant as

    +$$ +|c'\rangle=exp\left\{\sum_{a>F}\sum_{i\le F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}+\left(\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right)^2+\dots\right\}| c\rangle +$$ + + +









    +

    Thouless' theorem

    + +

    We note that

    +$$ +\prod_{i}\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\sum_{b>F}C_{bi}a_{b}^{\dagger}a_{i}| c\rangle =0, +$$ + +

    and all higher-order powers of these combinations of creation and annihilation operators disappear +due to the fact that \( (a_i)^n| c\rangle =0 \) when \( n > 1 \). This allows us to rewrite the expression for \( |c'\rangle \) as +

    +$$ +|c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle, +$$ + +

    which we can rewrite as

    +$$ +|c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle. +$$ + + +









    +

    Thouless' theorem

    + +

    The last equation can be written as

    +$$ +\begin{align} +|c'\rangle&=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle=\left(1+\sum_{a>F}C_{ai_1}a_{a}^{\dagger}a_{i_1}\right)a^{\dagger}_{i_1} +\label{_auto3}\\ +& \times\left(1+\sum_{a>F}C_{ai_2}a_{a}^{\dagger}a_{i_2}\right)a^{\dagger}_{i_2} \dots |0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle. +\label{_auto4} +\end{align} +$$ + + +









    +

    New operators

    + +

    If we define a new creation operator

    +$$ +\begin{equation} +b^{\dagger}_{i}=a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}, \label{eq:newb} +\end{equation} +$$ + +

    we have

    +$$ +|c'\rangle=\prod_{i}b^{\dagger}_{i}|0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle, +$$ + +

    meaning that the new representation of the Slater determinant in second quantization, \( |c'\rangle \), looks like our previous ones. However, this representation is not general enough since we have a restriction on the sum over single-particle states in Eq. \eqref{eq:newb}. The single-particle states have all to be above the Fermi level.

    + +









    +

    Thouless' theorem

    + +

    The question then is whether we can construct a general representation of a Slater determinant with a creation operator

    +$$ +\tilde{b}^{\dagger}_{i}=\sum_{p}f_{ip}a_{p}^{\dagger}, +$$ + +

    where \( f_{ip} \) is a matrix element of a unitary matrix which transforms our creation and annihilation operators +\( a^{\dagger} \) and \( a \) to \( \tilde{b}^{\dagger} \) and \( \tilde{b} \). These new operators define a new representation of a Slater determinant as +

    +$$ +|\tilde{c}\rangle=\prod_{i}\tilde{b}^{\dagger}_{i}|0\rangle. +$$ + + +









    +

    Showing that \( |\tilde{c}\rangle= |c'\rangle \)

    + +

    We need to show that \( |\tilde{c}\rangle= |c'\rangle \). We need also to assume that the new state +is not orthogonal to \( |c\rangle \), that is \( \langle c| \tilde{c}\rangle \ne 0 \). From this it follows that +

    +$$ +\langle c| \tilde{c}\rangle=\langle 0| a_{i_n}\dots a_{i_1}\left(\sum_{p=i_1}^{i_n}f_{i_1p}a_{p}^{\dagger} \right)\left(\sum_{q=i_1}^{i_n}f_{i_2q}a_{q}^{\dagger} \right)\dots \left(\sum_{t=i_1}^{i_n}f_{i_nt}a_{t}^{\dagger} \right)|0\rangle, +$$ + +

    which is nothing but the determinant \( det(f_{ip}) \) which we can, using the intermediate normalization condition, +normalize to one, that is +

    +$$ +det(f_{ip})=1, +$$ + +

    meaning that \( f \) has an inverse defined as (since we are dealing with orthogonal, and in our case unitary as well, transformations)

    +$$ +\sum_{k} f_{ik}f^{-1}_{kj} = \delta_{ij}, +$$ + +

    and

    +$$ +\sum_{j} f^{-1}_{ij}f_{jk} = \delta_{ik}. +$$ + + +









    +

    Thouless' theorem

    + +

    Using these relations we can then define the linear combination of creation (and annihilation as well) +operators as +

    +$$ +\sum_{i}f^{-1}_{ki}\tilde{b}^{\dagger}_{i}=\sum_{i}f^{-1}_{ki}\sum_{p=i_1}^{\infty}f_{ip}a_{p}^{\dagger}=a_{k}^{\dagger}+\sum_{i}\sum_{p=i_{n+1}}^{\infty}f^{-1}_{ki}f_{ip}a_{p}^{\dagger}. +$$ + +

    Defining

    +$$ +c_{kp}=\sum_{i \le F}f^{-1}_{ki}f_{ip}, +$$ + +

    we can redefine

    +$$ +a_{k}^{\dagger}+\sum_{i}\sum_{p=i_{n+1}}^{\infty}f^{-1}_{ki}f_{ip}a_{p}^{\dagger}=a_{k}^{\dagger}+\sum_{p=i_{n+1}}^{\infty}c_{kp}a_{p}^{\dagger}=b_k^{\dagger}, +$$ + +

    our starting point.

    + +









    +

    Thouless' theorem

    + +

    We have shown that our general representation of a Slater determinant

    +$$ +|\tilde{c}\rangle=\prod_{i}\tilde{b}^{\dagger}_{i}|0\rangle=|c'\rangle=\prod_{i}b^{\dagger}_{i}|0\rangle, +$$ + +

    with

    +$$ +b_k^{\dagger}=a_{k}^{\dagger}+\sum_{p=i_{n+1}}^{\infty}c_{kp}a_{p}^{\dagger}. +$$ + + +









    +

    Thouless' theorem

    + +

    This means that we can actually write an ansatz for the ground state of the system as a linear combination of +terms which contain the ansatz itself \( |c\rangle \) with an admixture from an infinity of one-particle-one-hole states. The latter has important consequences when we wish to interpret the Hartree-Fock equations and their stability. We can rewrite the new representation as +

    +$$ +|c'\rangle = |c\rangle+|\delta c\rangle, +$$ + +

    where \( |\delta c\rangle \) can now be interpreted as a small variation. If we approximate this term with +contributions from one-particle-one-hole (1p-1h) states only, we arrive at +

    +$$ +|c'\rangle = \left(1+\sum_{ai}\delta C_{ai}a_{a}^{\dagger}a_i\right)|c\rangle. +$$ + + +









    +

    Thouless' theorem

    + +

    In our derivation of the Hartree-Fock equations we have shown that

    +$$ +\langle \delta c| \hat{H} | c\rangle =0, +$$ + +

    which means that we have to satisfy

    +$$ +\langle c|\sum_{ai}\delta C_{ai}\left\{a_{a}^{\dagger}a_i\right\} \hat{H} | c\rangle =0. +$$ + +

    With this as a background, we are now ready to study the stability of the Hartree-Fock equations. +This is the topic for week 40. +

    © 1999-2024, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license diff --git a/doc/pub/week39/ipynb/ipynb-week39-src.tar.gz b/doc/pub/week39/ipynb/ipynb-week39-src.tar.gz index 718945e4..75656866 100644 Binary files a/doc/pub/week39/ipynb/ipynb-week39-src.tar.gz and b/doc/pub/week39/ipynb/ipynb-week39-src.tar.gz differ diff --git a/doc/pub/week39/ipynb/week39.ipynb b/doc/pub/week39/ipynb/week39.ipynb index f0f6c1bd..4adbcf0b 100644 --- a/doc/pub/week39/ipynb/week39.ipynb +++ b/doc/pub/week39/ipynb/week39.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "c928c76a", + "id": "8f006195", "metadata": { "editable": true }, @@ -14,7 +14,7 @@ }, { "cell_type": "markdown", - "id": "20201ff0", + "id": "9d2c4704", "metadata": { "editable": true }, @@ -27,7 +27,7 @@ }, { "cell_type": "markdown", - "id": "8e80f893", + "id": "114a1939", "metadata": { "editable": true }, @@ -53,8 +53,10 @@ "2. Friday: \n", "\n", " * Hartree-Fock theory and mean field theories\n", - "\n", - "\n", + "\n", + " * [Video of lecture](https://youtu.be/)\n", + "\n", + " * [Whiteboard notes](https://github.com/ManyBodyPhysics/FYS4480/blob/master/doc/HandwrittenNotes/2024/NotesSeptember27.pdf)\n", "\n", "* Lecture Material: These slides, handwritten notes\n", "\n", @@ -63,7 +65,7 @@ }, { "cell_type": "markdown", - "id": "6a3183c7", + "id": "ec58e0fd", "metadata": { "editable": true }, @@ -75,7 +77,7 @@ }, { "cell_type": "markdown", - "id": "9793f395", + "id": "40da8b3e", "metadata": { "editable": true }, @@ -87,7 +89,7 @@ }, { "cell_type": "markdown", - "id": "ced9e5f0", + "id": "93bad7cf", "metadata": { "editable": true }, @@ -97,7 +99,7 @@ }, { "cell_type": "markdown", - "id": "37d6b566", + "id": "2775fc77", "metadata": { "editable": true }, @@ -109,7 +111,7 @@ }, { "cell_type": "markdown", - "id": "c122416f", + "id": "ada9791e", "metadata": { "editable": true }, @@ -121,7 +123,7 @@ }, { "cell_type": "markdown", - "id": "6e70dcfa", + "id": "f45448d4", "metadata": { "editable": true }, @@ -131,7 +133,7 @@ }, { "cell_type": "markdown", - "id": "ca4d30cc", + "id": "caa9d822", "metadata": { "editable": true }, @@ -143,7 +145,7 @@ }, { "cell_type": "markdown", - "id": "ac84565d", + "id": "cba7f9e3", "metadata": { "editable": true }, @@ -153,7 +155,7 @@ }, { "cell_type": "markdown", - "id": "c87f48b6", + "id": "b6538d7c", "metadata": { "editable": true }, @@ -165,7 +167,7 @@ }, { "cell_type": "markdown", - "id": "b7328e44", + "id": "18977c18", "metadata": { "editable": true }, @@ -178,7 +180,7 @@ }, { "cell_type": "markdown", - "id": "fbb338ba", + "id": "a6285d5e", "metadata": { "editable": true }, @@ -191,7 +193,7 @@ }, { "cell_type": "markdown", - "id": "22eadbe3", + "id": "2f32b5fc", "metadata": { "editable": true }, @@ -201,7 +203,7 @@ }, { "cell_type": "markdown", - "id": "2b3cfea2", + "id": "39c3c7e2", "metadata": { "editable": true }, @@ -213,7 +215,7 @@ }, { "cell_type": "markdown", - "id": "0c128fd1", + "id": "9a7ccaf4", "metadata": { "editable": true }, @@ -225,7 +227,7 @@ }, { "cell_type": "markdown", - "id": "3291d01b", + "id": "155bda2d", "metadata": { "editable": true }, @@ -237,7 +239,7 @@ }, { "cell_type": "markdown", - "id": "1136a0d7", + "id": "ed1b3a49", "metadata": { "editable": true }, @@ -247,7 +249,7 @@ }, { "cell_type": "markdown", - "id": "81c7c589", + "id": "e3a95e8e", "metadata": { "editable": true }, @@ -259,7 +261,7 @@ }, { "cell_type": "markdown", - "id": "c366f0a2", + "id": "28cceb5b", "metadata": { "editable": true }, @@ -271,7 +273,7 @@ }, { "cell_type": "markdown", - "id": "163b3e63", + "id": "ded703ec", "metadata": { "editable": true }, @@ -283,7 +285,7 @@ }, { "cell_type": "markdown", - "id": "3a832ac4", + "id": "dd4216f7", "metadata": { "editable": true }, @@ -293,7 +295,7 @@ }, { "cell_type": "markdown", - "id": "aa595772", + "id": "aec4dd7a", "metadata": { "editable": true }, @@ -305,7 +307,7 @@ }, { "cell_type": "markdown", - "id": "8a1245b5", + "id": "9a47e099", "metadata": { "editable": true }, @@ -315,7 +317,7 @@ }, { "cell_type": "markdown", - "id": "7de548bc", + "id": "dda32f48", "metadata": { "editable": true }, @@ -329,7 +331,7 @@ }, { "cell_type": "markdown", - "id": "102b5d2b", + "id": "8ffd01d1", "metadata": { "editable": true }, @@ -341,7 +343,7 @@ }, { "cell_type": "markdown", - "id": "d9f7e4ca", + "id": "b9869d59", "metadata": { "editable": true }, @@ -351,7 +353,7 @@ }, { "cell_type": "markdown", - "id": "b610b4d0", + "id": "2073b479", "metadata": { "editable": true }, @@ -363,7 +365,7 @@ }, { "cell_type": "markdown", - "id": "a359c2e1", + "id": "2819eab2", "metadata": { "editable": true }, @@ -375,7 +377,7 @@ }, { "cell_type": "markdown", - "id": "4fd7e695", + "id": "1b93aaae", "metadata": { "editable": true }, @@ -387,7 +389,7 @@ }, { "cell_type": "markdown", - "id": "51322075", + "id": "95a1d353", "metadata": { "editable": true }, @@ -399,7 +401,7 @@ }, { "cell_type": "markdown", - "id": "f0b6aa3b", + "id": "7b8c5e13", "metadata": { "editable": true }, @@ -411,7 +413,7 @@ }, { "cell_type": "markdown", - "id": "c74ad012", + "id": "7cc8d471", "metadata": { "editable": true }, @@ -421,7 +423,7 @@ }, { "cell_type": "markdown", - "id": "aa71bc41", + "id": "73b9f6c8", "metadata": { "editable": true }, @@ -433,7 +435,7 @@ }, { "cell_type": "markdown", - "id": "d8917199", + "id": "fc9acf7d", "metadata": { "editable": true }, @@ -445,7 +447,7 @@ }, { "cell_type": "markdown", - "id": "25f3d543", + "id": "81b060e8", "metadata": { "editable": true }, @@ -455,7 +457,7 @@ }, { "cell_type": "markdown", - "id": "9dcd7a5f", + "id": "d25956af", "metadata": { "editable": true }, @@ -468,7 +470,7 @@ }, { "cell_type": "markdown", - "id": "d0592e19", + "id": "5a9e6efa", "metadata": { "editable": true }, @@ -479,7 +481,7 @@ }, { "cell_type": "markdown", - "id": "0eeef7c1", + "id": "ad168648", "metadata": { "editable": true }, @@ -491,7 +493,7 @@ }, { "cell_type": "markdown", - "id": "21906a80", + "id": "ff6a5e72", "metadata": { "editable": true }, @@ -503,7 +505,7 @@ }, { "cell_type": "markdown", - "id": "4730c6a3", + "id": "ce5872e6", "metadata": { "editable": true }, @@ -515,7 +517,7 @@ }, { "cell_type": "markdown", - "id": "e00b986c", + "id": "c0c37791", "metadata": { "editable": true }, @@ -525,7 +527,7 @@ }, { "cell_type": "markdown", - "id": "d6e452e8", + "id": "db1e6183", "metadata": { "editable": true }, @@ -537,7 +539,7 @@ }, { "cell_type": "markdown", - "id": "bc59bf58", + "id": "3e1822ea", "metadata": { "editable": true }, @@ -549,7 +551,7 @@ }, { "cell_type": "markdown", - "id": "2fa7115e", + "id": "16258439", "metadata": { "editable": true }, @@ -563,7 +565,7 @@ }, { "cell_type": "markdown", - "id": "baa548b0", + "id": "e4dcfcc7", "metadata": { "editable": true }, @@ -577,7 +579,7 @@ }, { "cell_type": "markdown", - "id": "6844000c", + "id": "655e6664", "metadata": { "editable": true }, @@ -589,7 +591,7 @@ }, { "cell_type": "markdown", - "id": "a94a62aa", + "id": "2b72b608", "metadata": { "editable": true }, @@ -599,7 +601,7 @@ }, { "cell_type": "markdown", - "id": "b543304e", + "id": "cb28f27f", "metadata": { "editable": true }, @@ -611,7 +613,7 @@ }, { "cell_type": "markdown", - "id": "28f05038", + "id": "996b84e7", "metadata": { "editable": true }, @@ -621,7 +623,7 @@ }, { "cell_type": "markdown", - "id": "f439e2e7", + "id": "3492e91e", "metadata": { "editable": true }, @@ -636,7 +638,7 @@ }, { "cell_type": "markdown", - "id": "bbedc301", + "id": "57c645a4", "metadata": { "editable": true }, @@ -648,7 +650,7 @@ }, { "cell_type": "markdown", - "id": "a9c6b4ea", + "id": "d652a219", "metadata": { "editable": true }, @@ -660,7 +662,7 @@ }, { "cell_type": "markdown", - "id": "b639e80e", + "id": "7c7a3e4f", "metadata": { "editable": true }, @@ -671,7 +673,7 @@ }, { "cell_type": "markdown", - "id": "7d2bab01", + "id": "dc166fc8", "metadata": { "editable": true }, @@ -683,7 +685,7 @@ }, { "cell_type": "markdown", - "id": "2d96e74e", + "id": "5ab32631", "metadata": { "editable": true }, @@ -695,7 +697,7 @@ }, { "cell_type": "markdown", - "id": "c7bcdfe9", + "id": "d4ab56b2", "metadata": { "editable": true }, @@ -708,7 +710,7 @@ }, { "cell_type": "markdown", - "id": "49262b75", + "id": "ab01903b", "metadata": { "editable": true }, @@ -718,7 +720,7 @@ }, { "cell_type": "markdown", - "id": "082a57a4", + "id": "681b4b97", "metadata": { "editable": true }, @@ -731,7 +733,7 @@ }, { "cell_type": "markdown", - "id": "26b62fcd", + "id": "7c342564", "metadata": { "editable": true }, @@ -742,7 +744,7 @@ }, { "cell_type": "markdown", - "id": "0944b92f", + "id": "34dad514", "metadata": { "editable": true }, @@ -754,7 +756,7 @@ }, { "cell_type": "markdown", - "id": "5758fe8a", + "id": "5574d7c8", "metadata": { "editable": true }, @@ -766,7 +768,7 @@ }, { "cell_type": "markdown", - "id": "579352e9", + "id": "440d3a94", "metadata": { "editable": true }, @@ -777,7 +779,7 @@ }, { "cell_type": "markdown", - "id": "fa1d370d", + "id": "284ce112", "metadata": { "editable": true }, @@ -789,7 +791,7 @@ }, { "cell_type": "markdown", - "id": "b1fb28ff", + "id": "f2a2dba2", "metadata": { "editable": true }, @@ -802,7 +804,7 @@ }, { "cell_type": "markdown", - "id": "1d883351", + "id": "cf4b6f7c", "metadata": { "editable": true }, @@ -815,7 +817,7 @@ }, { "cell_type": "markdown", - "id": "3018443f", + "id": "1d3f9a42", "metadata": { "editable": true }, @@ -827,7 +829,7 @@ }, { "cell_type": "markdown", - "id": "f9fccbfd", + "id": "d410a1c3", "metadata": { "editable": true }, @@ -840,7 +842,7 @@ }, { "cell_type": "markdown", - "id": "280e8770", + "id": "76dd1c1a", "metadata": { "editable": true }, @@ -851,7 +853,7 @@ }, { "cell_type": "markdown", - "id": "fe0840cc", + "id": "6f9e507d", "metadata": { "editable": true }, @@ -864,7 +866,7 @@ }, { "cell_type": "markdown", - "id": "cbffbf32", + "id": "86761e1e", "metadata": { "editable": true }, @@ -876,7 +878,7 @@ }, { "cell_type": "markdown", - "id": "7fdcd9a4", + "id": "e669badd", "metadata": { "editable": true }, @@ -887,7 +889,7 @@ }, { "cell_type": "markdown", - "id": "fa068534", + "id": "1abd2ace", "metadata": { "editable": true }, @@ -900,7 +902,7 @@ }, { "cell_type": "markdown", - "id": "313aab81", + "id": "6a127a82", "metadata": { "editable": true }, @@ -910,7 +912,7 @@ }, { "cell_type": "markdown", - "id": "9d9142d0", + "id": "29ca7bee", "metadata": { "editable": true }, @@ -922,7 +924,7 @@ }, { "cell_type": "markdown", - "id": "e82f6fa2", + "id": "14c53fb7", "metadata": { "editable": true }, @@ -936,7 +938,7 @@ }, { "cell_type": "markdown", - "id": "480655fc", + "id": "86303c68", "metadata": { "editable": true }, @@ -947,7 +949,7 @@ }, { "cell_type": "markdown", - "id": "0ada1874", + "id": "c3487691", "metadata": { "editable": true }, @@ -961,7 +963,7 @@ }, { "cell_type": "markdown", - "id": "a232f1c3", + "id": "fc80db00", "metadata": { "editable": true }, @@ -973,7 +975,7 @@ }, { "cell_type": "markdown", - "id": "9f111e9d", + "id": "b96791dc", "metadata": { "editable": true }, @@ -985,7 +987,7 @@ }, { "cell_type": "markdown", - "id": "063b5bf7", + "id": "4f21b6b2", "metadata": { "editable": true }, @@ -1000,7 +1002,7 @@ }, { "cell_type": "markdown", - "id": "96fd8c6b", + "id": "82b25c87", "metadata": { "editable": true }, @@ -1012,7 +1014,7 @@ }, { "cell_type": "markdown", - "id": "a29da0f4", + "id": "1f823703", "metadata": { "editable": true }, @@ -1024,7 +1026,7 @@ }, { "cell_type": "markdown", - "id": "f27de23f", + "id": "df08f695", "metadata": { "editable": true }, @@ -1034,7 +1036,7 @@ }, { "cell_type": "markdown", - "id": "8ea8e2ba", + "id": "ea6e988a", "metadata": { "editable": true }, @@ -1045,7 +1047,7 @@ }, { "cell_type": "markdown", - "id": "4affb9a9", + "id": "c2247b05", "metadata": { "editable": true }, @@ -1057,7 +1059,7 @@ }, { "cell_type": "markdown", - "id": "26d7c0db", + "id": "cad7c93d", "metadata": { "editable": true }, @@ -1071,7 +1073,7 @@ }, { "cell_type": "markdown", - "id": "e622987d", + "id": "b632643d", "metadata": { "editable": true }, @@ -1090,7 +1092,7 @@ }, { "cell_type": "markdown", - "id": "bd0c0420", + "id": "e0d23ef0", "metadata": { "editable": true }, @@ -1102,7 +1104,7 @@ }, { "cell_type": "markdown", - "id": "43d25e40", + "id": "c728c0a7", "metadata": { "editable": true }, @@ -1115,7 +1117,7 @@ }, { "cell_type": "markdown", - "id": "ffe9f02c", + "id": "8e6edeb8", "metadata": { "editable": true }, @@ -1125,7 +1127,7 @@ }, { "cell_type": "markdown", - "id": "d2b2d914", + "id": "9ad36644", "metadata": { "editable": true }, @@ -1136,7 +1138,7 @@ }, { "cell_type": "markdown", - "id": "982460b9", + "id": "af40f406", "metadata": { "editable": true }, @@ -1148,7 +1150,7 @@ }, { "cell_type": "markdown", - "id": "e1fb675a", + "id": "ac78a502", "metadata": { "editable": true }, @@ -1158,7 +1160,7 @@ }, { "cell_type": "markdown", - "id": "c9d44be9", + "id": "ad488f70", "metadata": { "editable": true }, @@ -1170,7 +1172,7 @@ }, { "cell_type": "markdown", - "id": "77b0a91d", + "id": "744a8bbd", "metadata": { "editable": true }, @@ -1183,7 +1185,7 @@ }, { "cell_type": "markdown", - "id": "86d1ede6", + "id": "0c42344b", "metadata": { "editable": true }, @@ -1195,7 +1197,7 @@ }, { "cell_type": "markdown", - "id": "951be791", + "id": "95ec56ca", "metadata": { "editable": true }, @@ -1205,7 +1207,7 @@ }, { "cell_type": "markdown", - "id": "3a5bea47", + "id": "b0c046de", "metadata": { "editable": true }, @@ -1217,7 +1219,7 @@ }, { "cell_type": "markdown", - "id": "dc0dc6ee", + "id": "92fc3493", "metadata": { "editable": true }, @@ -1231,7 +1233,7 @@ }, { "cell_type": "markdown", - "id": "9fcaaee5", + "id": "bf2d223c", "metadata": { "editable": true }, @@ -1243,7 +1245,7 @@ }, { "cell_type": "markdown", - "id": "26fa1097", + "id": "1fef53da", "metadata": { "editable": true }, @@ -1254,7 +1256,7 @@ }, { "cell_type": "markdown", - "id": "914aaa2b", + "id": "4acdfe6f", "metadata": { "editable": true }, @@ -1266,7 +1268,7 @@ }, { "cell_type": "markdown", - "id": "a1e4a5f2", + "id": "af8dcb53", "metadata": { "editable": true }, @@ -1278,7 +1280,7 @@ }, { "cell_type": "markdown", - "id": "d7d2c550", + "id": "e51ade95", "metadata": { "editable": true }, @@ -1288,7 +1290,7 @@ }, { "cell_type": "markdown", - "id": "e9bff8c4", + "id": "52e6d9b0", "metadata": { "editable": true }, @@ -1300,7 +1302,7 @@ }, { "cell_type": "markdown", - "id": "797d2b83", + "id": "a3a901d5", "metadata": { "editable": true }, @@ -1324,7 +1326,7 @@ }, { "cell_type": "markdown", - "id": "9d9b9ca3", + "id": "10d292cd", "metadata": { "editable": true }, @@ -1339,7 +1341,7 @@ }, { "cell_type": "markdown", - "id": "77b10ad2", + "id": "c73f0ebe", "metadata": { "editable": true }, @@ -1351,7 +1353,7 @@ }, { "cell_type": "markdown", - "id": "21bd524f", + "id": "437d6688", "metadata": { "editable": true }, @@ -1361,7 +1363,7 @@ }, { "cell_type": "markdown", - "id": "dc067fdb", + "id": "f58f5e49", "metadata": { "editable": true }, @@ -1386,7 +1388,7 @@ }, { "cell_type": "markdown", - "id": "b9b13841", + "id": "212c521a", "metadata": { "editable": true }, @@ -1399,7 +1401,7 @@ }, { "cell_type": "markdown", - "id": "c48f2102", + "id": "02fdcf41", "metadata": { "editable": true }, @@ -1411,7 +1413,7 @@ }, { "cell_type": "markdown", - "id": "e5b4ccd4", + "id": "8f93bd55", "metadata": { "editable": true }, @@ -1421,7 +1423,7 @@ }, { "cell_type": "markdown", - "id": "a35303d6", + "id": "e211f7c4", "metadata": { "editable": true }, @@ -1433,7 +1435,7 @@ }, { "cell_type": "markdown", - "id": "9ad7a313", + "id": "9067c079", "metadata": { "editable": true }, @@ -1443,7 +1445,7 @@ }, { "cell_type": "markdown", - "id": "ee830733", + "id": "2e0f7fa4", "metadata": { "editable": true }, @@ -1455,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "d607d398", + "id": "40b6661b", "metadata": { "editable": true }, @@ -1470,7 +1472,7 @@ }, { "cell_type": "markdown", - "id": "7cc612ea", + "id": "d701f09b", "metadata": { "editable": true }, @@ -1482,7 +1484,7 @@ }, { "cell_type": "markdown", - "id": "6fc15b56", + "id": "cbaefad2", "metadata": { "editable": true }, @@ -1493,7 +1495,7 @@ }, { "cell_type": "markdown", - "id": "12e3c48c", + "id": "72b151b8", "metadata": { "editable": true }, @@ -1505,7 +1507,7 @@ }, { "cell_type": "markdown", - "id": "10cb5afd", + "id": "b2002657", "metadata": { "editable": true }, @@ -1517,7 +1519,7 @@ }, { "cell_type": "markdown", - "id": "e0fbc451", + "id": "d489f6f8", "metadata": { "editable": true }, @@ -1529,7 +1531,7 @@ }, { "cell_type": "markdown", - "id": "0dc1fc48", + "id": "f051b89e", "metadata": { "editable": true }, @@ -1539,7 +1541,7 @@ }, { "cell_type": "markdown", - "id": "3c95fc55", + "id": "f82b778d", "metadata": { "editable": true }, @@ -1551,7 +1553,7 @@ }, { "cell_type": "markdown", - "id": "12034445", + "id": "d5e6e364", "metadata": { "editable": true }, @@ -1563,7 +1565,7 @@ }, { "cell_type": "markdown", - "id": "4ce0e94d", + "id": "6791bbb5", "metadata": { "editable": true }, @@ -1576,7 +1578,7 @@ }, { "cell_type": "markdown", - "id": "a9876512", + "id": "096581f1", "metadata": { "editable": true }, @@ -1588,7 +1590,7 @@ }, { "cell_type": "markdown", - "id": "16a158ae", + "id": "c8b43e35", "metadata": { "editable": true }, @@ -1600,7 +1602,7 @@ }, { "cell_type": "markdown", - "id": "3257173a", + "id": "a09073b8", "metadata": { "editable": true }, @@ -1610,7 +1612,7 @@ }, { "cell_type": "markdown", - "id": "8d8f8181", + "id": "7735b60b", "metadata": { "editable": true }, @@ -1622,7 +1624,7 @@ }, { "cell_type": "markdown", - "id": "335ee9d5", + "id": "05d6cfef", "metadata": { "editable": true }, @@ -1637,7 +1639,7 @@ }, { "cell_type": "markdown", - "id": "4106a138", + "id": "c2d8ecd6", "metadata": { "editable": true }, @@ -1650,7 +1652,7 @@ }, { "cell_type": "markdown", - "id": "c7a34b43", + "id": "907c1553", "metadata": { "editable": true }, @@ -1662,7 +1664,7 @@ }, { "cell_type": "markdown", - "id": "f3c1fcf4", + "id": "868c6a48", "metadata": { "editable": true }, @@ -1672,7 +1674,7 @@ }, { "cell_type": "markdown", - "id": "58d44e29", + "id": "b4d52e0a", "metadata": { "editable": true }, @@ -1684,7 +1686,7 @@ }, { "cell_type": "markdown", - "id": "17c2911a", + "id": "5abf44b4", "metadata": { "editable": true }, @@ -1694,7 +1696,7 @@ }, { "cell_type": "markdown", - "id": "ca990c26", + "id": "86f167bb", "metadata": { "editable": true }, @@ -1707,7 +1709,7 @@ }, { "cell_type": "markdown", - "id": "d4696472", + "id": "fb7438ae", "metadata": { "editable": true }, @@ -1720,7 +1722,7 @@ }, { "cell_type": "markdown", - "id": "e6e86457", + "id": "3f6faad3", "metadata": { "editable": true }, @@ -1731,7 +1733,7 @@ }, { "cell_type": "markdown", - "id": "38fa9e8a", + "id": "6646a9f6", "metadata": { "editable": true }, @@ -1743,7 +1745,7 @@ }, { "cell_type": "markdown", - "id": "d9440924", + "id": "7f06e3c0", "metadata": { "editable": true }, @@ -1755,7 +1757,7 @@ }, { "cell_type": "markdown", - "id": "a39d654f", + "id": "72e6b784", "metadata": { "editable": true }, @@ -1765,7 +1767,7 @@ }, { "cell_type": "markdown", - "id": "6ae7ad3a", + "id": "25766cd5", "metadata": { "editable": true }, @@ -1779,7 +1781,7 @@ }, { "cell_type": "markdown", - "id": "d28f4d76", + "id": "9d4cb46d", "metadata": { "editable": true }, @@ -1791,7 +1793,7 @@ }, { "cell_type": "markdown", - "id": "3cdea6ee", + "id": "5bb28de2", "metadata": { "editable": true }, @@ -1806,7 +1808,7 @@ }, { "cell_type": "markdown", - "id": "f6b5454a", + "id": "2a3568bc", "metadata": { "editable": true }, @@ -1816,7 +1818,7 @@ }, { "cell_type": "markdown", - "id": "b61aced1", + "id": "3902856f", "metadata": { "editable": true }, @@ -1829,7 +1831,7 @@ }, { "cell_type": "markdown", - "id": "1835a5d5", + "id": "bb387c14", "metadata": { "editable": true }, @@ -1841,7 +1843,7 @@ }, { "cell_type": "markdown", - "id": "2f60bf90", + "id": "ee6d3cbe", "metadata": { "editable": true }, @@ -1853,7 +1855,7 @@ }, { "cell_type": "markdown", - "id": "e5b99d8e", + "id": "fe571de6", "metadata": { "editable": true }, @@ -1863,7 +1865,7 @@ }, { "cell_type": "markdown", - "id": "1c98f094", + "id": "13ce17da", "metadata": { "editable": true }, @@ -1875,7 +1877,7 @@ }, { "cell_type": "markdown", - "id": "bcf5b351", + "id": "c88f1e3c", "metadata": { "editable": true }, @@ -1887,7 +1889,7 @@ }, { "cell_type": "markdown", - "id": "99f9592a", + "id": "5bd6fd48", "metadata": { "editable": true }, @@ -1899,7 +1901,7 @@ }, { "cell_type": "markdown", - "id": "612de344", + "id": "55c360d7", "metadata": { "editable": true }, @@ -1909,7 +1911,7 @@ }, { "cell_type": "markdown", - "id": "75348b73", + "id": "0ba02f79", "metadata": { "editable": true }, @@ -1921,7 +1923,7 @@ }, { "cell_type": "markdown", - "id": "5a57ac44", + "id": "2f541c51", "metadata": { "editable": true }, @@ -1933,7 +1935,7 @@ }, { "cell_type": "markdown", - "id": "13c6de89", + "id": "d69a48ec", "metadata": { "editable": true }, @@ -1945,7 +1947,7 @@ }, { "cell_type": "markdown", - "id": "8f1052ad", + "id": "61cf6c29", "metadata": { "editable": true }, @@ -1955,7 +1957,7 @@ }, { "cell_type": "markdown", - "id": "c29dd05b", + "id": "9fb143ec", "metadata": { "editable": true }, @@ -1967,7 +1969,7 @@ }, { "cell_type": "markdown", - "id": "b76b4789", + "id": "65c22499", "metadata": { "editable": true }, @@ -1979,7 +1981,7 @@ }, { "cell_type": "markdown", - "id": "77bfc1a1", + "id": "d5aed12b", "metadata": { "editable": true }, @@ -1997,7 +1999,7 @@ }, { "cell_type": "markdown", - "id": "37740f56", + "id": "8eff2350", "metadata": { "editable": true }, @@ -2008,7 +2010,7 @@ }, { "cell_type": "markdown", - "id": "098db355", + "id": "1c1a8674", "metadata": { "editable": true }, @@ -2027,7 +2029,7 @@ }, { "cell_type": "markdown", - "id": "6d236105", + "id": "51605135", "metadata": { "editable": true }, @@ -2043,7 +2045,7 @@ }, { "cell_type": "markdown", - "id": "86bbe510", + "id": "32cd51be", "metadata": { "editable": true }, @@ -2056,7 +2058,7 @@ }, { "cell_type": "markdown", - "id": "f81f8f83", + "id": "6e36ab8f", "metadata": { "editable": true }, @@ -2066,7 +2068,7 @@ }, { "cell_type": "markdown", - "id": "96419b8c", + "id": "c5e23372", "metadata": { "editable": true }, @@ -2079,7 +2081,7 @@ }, { "cell_type": "markdown", - "id": "e92fd238", + "id": "6faf60cb", "metadata": { "editable": true }, @@ -2091,7 +2093,7 @@ }, { "cell_type": "markdown", - "id": "7a64b3ce", + "id": "1870c891", "metadata": { "editable": true }, @@ -2108,7 +2110,7 @@ }, { "cell_type": "markdown", - "id": "0e82b249", + "id": "506c3b5b", "metadata": { "editable": true }, @@ -2128,7 +2130,7 @@ }, { "cell_type": "markdown", - "id": "b4e2e577", + "id": "991fe4bc", "metadata": { "editable": true }, @@ -2146,7 +2148,7 @@ }, { "cell_type": "markdown", - "id": "79f1f3e9", + "id": "e0d8262d", "metadata": { "editable": true }, @@ -2163,7 +2165,7 @@ }, { "cell_type": "markdown", - "id": "a01047a4", + "id": "7b0aa9d9", "metadata": { "editable": true }, @@ -2179,7 +2181,7 @@ }, { "cell_type": "markdown", - "id": "ce057ddc", + "id": "786c13d0", "metadata": { "editable": true }, @@ -2205,7 +2207,7 @@ }, { "cell_type": "markdown", - "id": "5abfc519", + "id": "e4154b51", "metadata": { "editable": true }, @@ -2224,7 +2226,7 @@ }, { "cell_type": "markdown", - "id": "e620fae7", + "id": "150ae68e", "metadata": { "editable": true }, @@ -2238,7 +2240,7 @@ }, { "cell_type": "markdown", - "id": "cf232c13", + "id": "e7cd90b4", "metadata": { "editable": true }, @@ -2251,7 +2253,7 @@ }, { "cell_type": "markdown", - "id": "be3de494", + "id": "0922d15c", "metadata": { "editable": true }, @@ -2261,7 +2263,7 @@ }, { "cell_type": "markdown", - "id": "d2c9372e", + "id": "827e94c5", "metadata": { "editable": true }, @@ -2276,7 +2278,7 @@ }, { "cell_type": "markdown", - "id": "8e0d10b8", + "id": "90b92d0d", "metadata": { "editable": true }, @@ -2286,7 +2288,7 @@ }, { "cell_type": "markdown", - "id": "17c1cb3b", + "id": "4e4d71ca", "metadata": { "editable": true }, @@ -2300,7 +2302,7 @@ }, { "cell_type": "markdown", - "id": "39d68b33", + "id": "9fea05f9", "metadata": { "editable": true }, @@ -2315,7 +2317,7 @@ }, { "cell_type": "markdown", - "id": "2123cf6c", + "id": "42140ecf", "metadata": { "editable": true }, @@ -2327,7 +2329,7 @@ }, { "cell_type": "markdown", - "id": "c100b5c3", + "id": "0c394c8d", "metadata": { "editable": true }, @@ -2339,7 +2341,7 @@ }, { "cell_type": "markdown", - "id": "ee379344", + "id": "522f88f4", "metadata": { "editable": true }, @@ -2349,7 +2351,7 @@ }, { "cell_type": "markdown", - "id": "5ee2d45e", + "id": "1683988a", "metadata": { "editable": true }, @@ -2362,7 +2364,7 @@ }, { "cell_type": "markdown", - "id": "d2477141", + "id": "562a527e", "metadata": { "editable": true }, @@ -2373,7 +2375,7 @@ }, { "cell_type": "markdown", - "id": "4e3cdbf6", + "id": "80252c87", "metadata": { "editable": true }, @@ -2385,7 +2387,7 @@ }, { "cell_type": "markdown", - "id": "fdb7c1e8", + "id": "a4d01e68", "metadata": { "editable": true }, @@ -2404,7 +2406,7 @@ }, { "cell_type": "markdown", - "id": "cbed2936", + "id": "7ac20ae5", "metadata": { "editable": true }, @@ -2421,7 +2423,7 @@ }, { "cell_type": "markdown", - "id": "4b7d0cea", + "id": "1d57b914", "metadata": { "editable": true }, @@ -2432,7 +2434,7 @@ }, { "cell_type": "markdown", - "id": "7c53d849", + "id": "b0ae26ec", "metadata": { "editable": true }, @@ -2445,7 +2447,7 @@ }, { "cell_type": "markdown", - "id": "94c40fdc", + "id": "02d2cbc9", "metadata": { "editable": true }, @@ -2457,7 +2459,7 @@ }, { "cell_type": "markdown", - "id": "6eebccad", + "id": "7d1edf01", "metadata": { "editable": true }, @@ -2468,7 +2470,7 @@ }, { "cell_type": "markdown", - "id": "23f76ef1", + "id": "6a561e7a", "metadata": { "editable": true }, @@ -2480,7 +2482,7 @@ }, { "cell_type": "markdown", - "id": "ccb41533", + "id": "8ca562ea", "metadata": { "editable": true }, @@ -2499,7 +2501,7 @@ }, { "cell_type": "markdown", - "id": "312dff36", + "id": "3107fdeb", "metadata": { "editable": true }, @@ -2511,7 +2513,7 @@ }, { "cell_type": "markdown", - "id": "d90e6df7", + "id": "e194fb6c", "metadata": { "editable": true }, @@ -2523,7 +2525,7 @@ }, { "cell_type": "markdown", - "id": "59fcb8e3", + "id": "c86e5c4a", "metadata": { "editable": true }, @@ -2535,7 +2537,7 @@ }, { "cell_type": "markdown", - "id": "ed68841d", + "id": "c79bfcfa", "metadata": { "editable": true }, @@ -2545,7 +2547,7 @@ }, { "cell_type": "markdown", - "id": "4c1c4903", + "id": "2a386aad", "metadata": { "editable": true }, @@ -2557,7 +2559,7 @@ }, { "cell_type": "markdown", - "id": "cf1fec11", + "id": "a13d456c", "metadata": { "editable": true }, @@ -2567,7 +2569,7 @@ }, { "cell_type": "markdown", - "id": "c230ae64", + "id": "e7fd14b9", "metadata": { "editable": true }, @@ -2579,7 +2581,7 @@ }, { "cell_type": "markdown", - "id": "4728c301", + "id": "46caa8db", "metadata": { "editable": true }, @@ -2591,7 +2593,7 @@ }, { "cell_type": "markdown", - "id": "5e8191ba", + "id": "c6a6f19b", "metadata": { "editable": true }, @@ -2603,7 +2605,7 @@ }, { "cell_type": "markdown", - "id": "78c60fbc", + "id": "72c92b96", "metadata": { "editable": true }, @@ -2618,7 +2620,7 @@ }, { "cell_type": "markdown", - "id": "29d9a3f5", + "id": "0ce7bdc3", "metadata": { "editable": true }, @@ -2635,7 +2637,7 @@ }, { "cell_type": "markdown", - "id": "c7195dae", + "id": "050f3341", "metadata": { "editable": true }, @@ -2649,7 +2651,7 @@ }, { "cell_type": "markdown", - "id": "aa8c34e0", + "id": "95eab2c0", "metadata": { "editable": true }, @@ -2661,7 +2663,7 @@ }, { "cell_type": "markdown", - "id": "6e8cba21", + "id": "3497bfd5", "metadata": { "editable": true }, @@ -2682,7 +2684,7 @@ }, { "cell_type": "markdown", - "id": "d92b3e82", + "id": "8eb1cc3b", "metadata": { "editable": true }, @@ -2692,7 +2694,7 @@ }, { "cell_type": "markdown", - "id": "7212fb11", + "id": "5e9c5525", "metadata": { "editable": true }, @@ -2706,7 +2708,7 @@ }, { "cell_type": "markdown", - "id": "b4254855", + "id": "682809f4", "metadata": { "editable": true }, @@ -2722,7 +2724,7 @@ }, { "cell_type": "markdown", - "id": "352b0d02", + "id": "114fdc92", "metadata": { "editable": true }, @@ -2734,7 +2736,7 @@ }, { "cell_type": "markdown", - "id": "8c822297", + "id": "fad6c996", "metadata": { "editable": true }, @@ -2746,7 +2748,7 @@ }, { "cell_type": "markdown", - "id": "5151ef66", + "id": "cd22fa97", "metadata": { "editable": true }, @@ -2758,7 +2760,7 @@ }, { "cell_type": "markdown", - "id": "0edec3e3", + "id": "14ce683a", "metadata": { "editable": true }, @@ -2770,7 +2772,7 @@ }, { "cell_type": "markdown", - "id": "68071fd2", + "id": "6278f567", "metadata": { "editable": true }, @@ -2792,7 +2794,7 @@ }, { "cell_type": "markdown", - "id": "32a56997", + "id": "76bec6f7", "metadata": { "editable": true }, @@ -2802,7 +2804,7 @@ }, { "cell_type": "markdown", - "id": "8807749e", + "id": "c07a017e", "metadata": { "editable": true }, @@ -2818,7 +2820,7 @@ }, { "cell_type": "markdown", - "id": "417ac4e8", + "id": "627969e4", "metadata": { "editable": true }, @@ -2832,7 +2834,7 @@ }, { "cell_type": "markdown", - "id": "567aa0e1", + "id": "e4bb2212", "metadata": { "editable": true }, @@ -2842,7 +2844,7 @@ }, { "cell_type": "markdown", - "id": "5a6f2b67", + "id": "61a5b3cd", "metadata": { "editable": true }, @@ -2855,7 +2857,7 @@ }, { "cell_type": "markdown", - "id": "2d2886c5", + "id": "cf5b7e0a", "metadata": { "editable": true }, @@ -2874,7 +2876,7 @@ }, { "cell_type": "markdown", - "id": "b7cfde16", + "id": "bfb919c6", "metadata": { "editable": true }, @@ -2884,7 +2886,7 @@ }, { "cell_type": "markdown", - "id": "d0fe5d50", + "id": "e106ab06", "metadata": { "editable": true }, @@ -2896,7 +2898,7 @@ }, { "cell_type": "markdown", - "id": "598c5d6f", + "id": "790fc94b", "metadata": { "editable": true }, @@ -2915,7 +2917,7 @@ }, { "cell_type": "markdown", - "id": "4b7da6ee", + "id": "a13c5c90", "metadata": { "editable": true }, @@ -2929,7 +2931,7 @@ }, { "cell_type": "markdown", - "id": "9cf3fcb0", + "id": "11b99485", "metadata": { "editable": true }, @@ -2942,7 +2944,7 @@ }, { "cell_type": "markdown", - "id": "76bcf95d", + "id": "b6101bff", "metadata": { "editable": true }, @@ -2952,7 +2954,7 @@ }, { "cell_type": "markdown", - "id": "f0eafb3e", + "id": "5c278951", "metadata": { "editable": true }, @@ -2970,7 +2972,7 @@ }, { "cell_type": "markdown", - "id": "9e999768", + "id": "b64f6bde", "metadata": { "editable": true }, @@ -2983,7 +2985,7 @@ }, { "cell_type": "markdown", - "id": "b59755e9", + "id": "04e8ba2b", "metadata": { "editable": true }, @@ -2995,7 +2997,7 @@ }, { "cell_type": "markdown", - "id": "e9bebb4a", + "id": "2db0ec33", "metadata": { "editable": true }, @@ -3006,7 +3008,7 @@ }, { "cell_type": "markdown", - "id": "cf081606", + "id": "4fa9eadd", "metadata": { "editable": true }, @@ -3019,7 +3021,7 @@ }, { "cell_type": "markdown", - "id": "9f18a202", + "id": "b884449b", "metadata": { "editable": true }, @@ -3031,7 +3033,7 @@ }, { "cell_type": "markdown", - "id": "f9882d06", + "id": "1fdae7ec", "metadata": { "editable": true }, @@ -3044,7 +3046,7 @@ }, { "cell_type": "markdown", - "id": "e5c98a15", + "id": "fe00dbaa", "metadata": { "editable": true }, @@ -3054,7 +3056,7 @@ }, { "cell_type": "markdown", - "id": "46255f45", + "id": "f804d9b2", "metadata": { "editable": true }, @@ -3066,7 +3068,7 @@ }, { "cell_type": "markdown", - "id": "6c005ff5", + "id": "3df98d7c", "metadata": { "editable": true }, @@ -3079,7 +3081,7 @@ }, { "cell_type": "markdown", - "id": "bf5ef400", + "id": "9dfe067a", "metadata": { "editable": true }, @@ -3089,7 +3091,7 @@ }, { "cell_type": "markdown", - "id": "23fc329a", + "id": "6d157727", "metadata": { "editable": true }, @@ -3106,7 +3108,7 @@ }, { "cell_type": "markdown", - "id": "d05173d7", + "id": "5b90a385", "metadata": { "editable": true }, @@ -3118,7 +3120,7 @@ }, { "cell_type": "markdown", - "id": "ee8d3e7c", + "id": "8f64d462", "metadata": { "editable": true }, @@ -3130,7 +3132,7 @@ }, { "cell_type": "markdown", - "id": "01226122", + "id": "04aa6709", "metadata": { "editable": true }, @@ -3143,7 +3145,7 @@ }, { "cell_type": "markdown", - "id": "3d4ce626", + "id": "3c914f8f", "metadata": { "editable": true }, @@ -3154,7 +3156,7 @@ }, { "cell_type": "markdown", - "id": "a573723a", + "id": "2610257e", "metadata": { "editable": true }, @@ -3167,7 +3169,7 @@ }, { "cell_type": "markdown", - "id": "c131f166", + "id": "e99f983e", "metadata": { "editable": true }, @@ -3180,7 +3182,7 @@ }, { "cell_type": "markdown", - "id": "69e909d6", + "id": "5159c497", "metadata": { "editable": true }, @@ -3190,7 +3192,7 @@ }, { "cell_type": "markdown", - "id": "119ae768", + "id": "d08e2502", "metadata": { "editable": true }, @@ -3202,7 +3204,7 @@ }, { "cell_type": "markdown", - "id": "67c53390", + "id": "ccdef2e3", "metadata": { "editable": true }, @@ -3212,7 +3214,7 @@ }, { "cell_type": "markdown", - "id": "929f8cbd", + "id": "0e416aec", "metadata": { "editable": true }, @@ -3224,7 +3226,7 @@ }, { "cell_type": "markdown", - "id": "18fe1079", + "id": "19ddf277", "metadata": { "editable": true }, @@ -3244,7 +3246,7 @@ }, { "cell_type": "markdown", - "id": "8c42d663", + "id": "2b09f31b", "metadata": { "editable": true }, @@ -3257,7 +3259,7 @@ }, { "cell_type": "markdown", - "id": "39fba9e8", + "id": "81017739", "metadata": { "editable": true }, @@ -3271,7 +3273,7 @@ }, { "cell_type": "markdown", - "id": "b8f3f841", + "id": "f811cba2", "metadata": { "editable": true }, @@ -3283,7 +3285,7 @@ }, { "cell_type": "markdown", - "id": "10c9e69e", + "id": "6e8b5a4f", "metadata": { "editable": true }, @@ -3294,7 +3296,7 @@ }, { "cell_type": "markdown", - "id": "9d29e351", + "id": "9b2835a5", "metadata": { "editable": true }, @@ -3306,7 +3308,7 @@ }, { "cell_type": "markdown", - "id": "c999b87b", + "id": "281ce39d", "metadata": { "editable": true }, @@ -3317,7 +3319,7 @@ }, { "cell_type": "markdown", - "id": "72acdbf1", + "id": "ceba8cdf", "metadata": { "editable": true }, @@ -3330,7 +3332,7 @@ }, { "cell_type": "markdown", - "id": "4c51a4be", + "id": "bad761cb", "metadata": { "editable": true }, @@ -3348,7 +3350,7 @@ }, { "cell_type": "markdown", - "id": "f5d9b0ae", + "id": "9ff690ff", "metadata": { "editable": true }, @@ -3358,7 +3360,7 @@ }, { "cell_type": "markdown", - "id": "976ea4b4", + "id": "98443e66", "metadata": { "editable": true }, @@ -3371,7 +3373,7 @@ }, { "cell_type": "markdown", - "id": "7b996d2b", + "id": "2f9cf056", "metadata": { "editable": true }, @@ -3381,7 +3383,7 @@ }, { "cell_type": "markdown", - "id": "cda351d1", + "id": "4174c0fc", "metadata": { "editable": true }, @@ -3392,7 +3394,7 @@ }, { "cell_type": "markdown", - "id": "7b0bab43", + "id": "dfc7fb10", "metadata": { "editable": true }, @@ -3405,7 +3407,7 @@ }, { "cell_type": "markdown", - "id": "67b78d6e", + "id": "16a4f91a", "metadata": { "editable": true }, @@ -3415,7 +3417,7 @@ }, { "cell_type": "markdown", - "id": "af99959f", + "id": "87f47a07", "metadata": { "editable": true }, @@ -3428,7 +3430,7 @@ }, { "cell_type": "markdown", - "id": "6ef086d2", + "id": "4a02ab43", "metadata": { "editable": true }, @@ -3438,7 +3440,7 @@ }, { "cell_type": "markdown", - "id": "45c48dc4", + "id": "5e599cb2", "metadata": { "editable": true }, @@ -3449,7 +3451,7 @@ }, { "cell_type": "markdown", - "id": "0cc89185", + "id": "ff66b053", "metadata": { "editable": true }, @@ -3462,7 +3464,7 @@ }, { "cell_type": "markdown", - "id": "a93c04ae", + "id": "5ce389b6", "metadata": { "editable": true }, @@ -3472,7 +3474,7 @@ }, { "cell_type": "markdown", - "id": "7df7f1e2", + "id": "6dac3cd2", "metadata": { "editable": true }, @@ -3485,7 +3487,7 @@ }, { "cell_type": "markdown", - "id": "8892aac5", + "id": "516a7a5d", "metadata": { "editable": true }, @@ -3499,7 +3501,7 @@ }, { "cell_type": "markdown", - "id": "382c5735", + "id": "d3c17cf9", "metadata": { "editable": true }, @@ -3511,7 +3513,7 @@ }, { "cell_type": "markdown", - "id": "3d07279c", + "id": "c6692a94", "metadata": { "editable": true }, @@ -3525,7 +3527,7 @@ }, { "cell_type": "markdown", - "id": "1ef2332f", + "id": "69526a3d", "metadata": { "editable": true }, @@ -3535,7 +3537,7 @@ }, { "cell_type": "markdown", - "id": "252fc372", + "id": "43a6c743", "metadata": { "editable": true }, @@ -3546,7 +3548,7 @@ }, { "cell_type": "markdown", - "id": "5cf513d5", + "id": "6016fcbd", "metadata": { "editable": true }, @@ -3559,7 +3561,7 @@ }, { "cell_type": "markdown", - "id": "634cb97f", + "id": "84a575df", "metadata": { "editable": true }, @@ -3569,7 +3571,7 @@ }, { "cell_type": "markdown", - "id": "0e77aaf2", + "id": "a6df55bf", "metadata": { "editable": true }, @@ -3582,7 +3584,7 @@ }, { "cell_type": "markdown", - "id": "1ec6ee8e", + "id": "11b99892", "metadata": { "editable": true }, @@ -3592,7 +3594,7 @@ }, { "cell_type": "markdown", - "id": "54f8b68c", + "id": "1b8a3e6f", "metadata": { "editable": true }, @@ -3604,7 +3606,7 @@ }, { "cell_type": "markdown", - "id": "b68dd9f1", + "id": "6611adae", "metadata": { "editable": true }, @@ -3615,7 +3617,7 @@ }, { "cell_type": "markdown", - "id": "a2ed4e54", + "id": "4e7ea340", "metadata": { "editable": true }, @@ -3627,7 +3629,7 @@ }, { "cell_type": "markdown", - "id": "b982761a", + "id": "59e9e07a", "metadata": { "editable": true }, @@ -3638,7 +3640,7 @@ }, { "cell_type": "markdown", - "id": "e1c9894b", + "id": "c6882206", "metadata": { "editable": true }, @@ -3657,7 +3659,7 @@ }, { "cell_type": "markdown", - "id": "4bc48513", + "id": "6ccfc708", "metadata": { "editable": true }, @@ -3669,7 +3671,7 @@ }, { "cell_type": "markdown", - "id": "6080bf1a", + "id": "a59a7d75", "metadata": { "editable": true }, @@ -3683,7 +3685,7 @@ }, { "cell_type": "markdown", - "id": "513bb06b", + "id": "1e5df9f3", "metadata": { "editable": true }, @@ -3694,7 +3696,7 @@ }, { "cell_type": "markdown", - "id": "2989b303", + "id": "42bcad87", "metadata": { "editable": true }, @@ -3708,7 +3710,7 @@ }, { "cell_type": "markdown", - "id": "14b96b69", + "id": "6abe5360", "metadata": { "editable": true }, @@ -3718,7 +3720,7 @@ }, { "cell_type": "markdown", - "id": "aa2f4c76", + "id": "9417709e", "metadata": { "editable": true }, @@ -3729,7 +3731,7 @@ }, { "cell_type": "markdown", - "id": "22c6eb4e", + "id": "f1a41836", "metadata": { "editable": true }, @@ -3743,7 +3745,7 @@ }, { "cell_type": "markdown", - "id": "5be5b818", + "id": "c86e929b", "metadata": { "editable": true }, @@ -3753,7 +3755,7 @@ }, { "cell_type": "markdown", - "id": "65e34782", + "id": "c4ce6b7b", "metadata": { "editable": true }, @@ -3767,7 +3769,7 @@ }, { "cell_type": "markdown", - "id": "004e63f6", + "id": "2526862d", "metadata": { "editable": true }, @@ -3777,7 +3779,7 @@ }, { "cell_type": "markdown", - "id": "486fc9cc", + "id": "1e38d109", "metadata": { "editable": true }, @@ -3790,7 +3792,7 @@ }, { "cell_type": "markdown", - "id": "c6c7b4c5", + "id": "f6fb86f8", "metadata": { "editable": true }, @@ -3801,7 +3803,7 @@ }, { "cell_type": "markdown", - "id": "7835f119", + "id": "a946e785", "metadata": { "editable": true }, @@ -3813,7 +3815,7 @@ }, { "cell_type": "markdown", - "id": "23a5a6d2", + "id": "13ca5c1b", "metadata": { "editable": true }, @@ -3823,7 +3825,7 @@ }, { "cell_type": "markdown", - "id": "5bf2ad18", + "id": "494c5584", "metadata": { "editable": true }, @@ -3835,7 +3837,7 @@ }, { "cell_type": "markdown", - "id": "cfa4890e", + "id": "aed08977", "metadata": { "editable": true }, @@ -3846,7 +3848,7 @@ }, { "cell_type": "markdown", - "id": "c69f7825", + "id": "7a421098", "metadata": { "editable": true }, @@ -3857,7 +3859,7 @@ }, { "cell_type": "markdown", - "id": "355afdb0", + "id": "dee1b6a1", "metadata": { "editable": true }, @@ -3870,7 +3872,7 @@ }, { "cell_type": "markdown", - "id": "1668b012", + "id": "98bd7b4d", "metadata": { "editable": true }, @@ -3880,7 +3882,7 @@ }, { "cell_type": "markdown", - "id": "16d84fcd", + "id": "8494541c", "metadata": { "editable": true }, @@ -3892,7 +3894,7 @@ }, { "cell_type": "markdown", - "id": "333837ee", + "id": "879a78b9", "metadata": { "editable": true }, @@ -3902,7 +3904,7 @@ }, { "cell_type": "markdown", - "id": "b8573745", + "id": "8cf546fa", "metadata": { "editable": true }, @@ -3914,7 +3916,7 @@ }, { "cell_type": "markdown", - "id": "8efb14d4", + "id": "31e82c51", "metadata": { "editable": true }, @@ -3924,7 +3926,7 @@ }, { "cell_type": "markdown", - "id": "3c841e3e", + "id": "232e98e4", "metadata": { "editable": true }, @@ -3936,7 +3938,7 @@ }, { "cell_type": "markdown", - "id": "aef3e4e2", + "id": "b0497fd8", "metadata": { "editable": true }, @@ -3947,7 +3949,7 @@ }, { "cell_type": "markdown", - "id": "8bc68665", + "id": "53c481c7", "metadata": { "editable": true }, @@ -3959,7 +3961,7 @@ }, { "cell_type": "markdown", - "id": "5785cd8a", + "id": "5904aa14", "metadata": { "editable": true }, @@ -3969,7 +3971,7 @@ }, { "cell_type": "markdown", - "id": "dd2ee53d", + "id": "577d4c62", "metadata": { "editable": true }, @@ -3981,7 +3983,7 @@ }, { "cell_type": "markdown", - "id": "6c1fc8ad", + "id": "2010454f", "metadata": { "editable": true }, @@ -3993,7 +3995,7 @@ }, { "cell_type": "markdown", - "id": "91fd6e0d", + "id": "a1e8754d", "metadata": { "editable": true }, @@ -4006,7 +4008,7 @@ }, { "cell_type": "markdown", - "id": "baae057c", + "id": "807de295", "metadata": { "editable": true }, @@ -4018,7 +4020,7 @@ }, { "cell_type": "markdown", - "id": "f59a80d4", + "id": "4166b206", "metadata": { "editable": true }, @@ -4028,7 +4030,7 @@ }, { "cell_type": "markdown", - "id": "45c7e930", + "id": "b50f65ff", "metadata": { "editable": true }, @@ -4040,7 +4042,7 @@ }, { "cell_type": "markdown", - "id": "0d4f3c53", + "id": "fe87e34c", "metadata": { "editable": true }, @@ -4050,7 +4052,7 @@ }, { "cell_type": "markdown", - "id": "a7d08543", + "id": "98d23df9", "metadata": { "editable": true }, @@ -4062,7 +4064,7 @@ }, { "cell_type": "markdown", - "id": "e4861c06", + "id": "79049949", "metadata": { "editable": true }, @@ -4072,7 +4074,7 @@ }, { "cell_type": "markdown", - "id": "35b6739e", + "id": "ec91f51e", "metadata": { "editable": true }, @@ -4081,6 +4083,746 @@ "\\Delta S_{\\pi}=\\epsilon_{0d^{\\pi}_{5/2}}^{\\mathrm{HF}}-\\epsilon_{0p^{\\pi}_{1/2}}^{\\mathrm{HF}}.\n", "$$" ] + }, + { + "cell_type": "markdown", + "id": "12f5b3f8", + "metadata": { + "editable": true + }, + "source": [ + "## Hartree-Fock in second quantization and stability of HF solution\n", + "\n", + "We wish now to derive the Hartree-Fock equations using our second-quantized formalism and study the stability of the equations. \n", + "Our ansatz for the ground state of the system is approximated as (this is our representation of a Slater determinant in second quantization)" + ] + }, + { + "cell_type": "markdown", + "id": "c94b9928", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "|\\Phi_0\\rangle = |c\\rangle = a^{\\dagger}_i a^{\\dagger}_j \\dots a^{\\dagger}_l|0\\rangle.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "bb61c47f", + "metadata": { + "editable": true + }, + "source": [ + "We wish to determine $\\hat{u}^{HF}$ so that \n", + "$E_0^{HF}= \\langle c|\\hat{H}| c\\rangle$ becomes a local minimum. \n", + "\n", + "In our analysis here we will need Thouless' theorem, which states that\n", + "an arbitrary Slater determinant $|c'\\rangle$ which is not orthogonal to a determinant\n", + "$| c\\rangle ={\\displaystyle\\prod_{i=1}^{n}}\n", + "a_{\\alpha_{i}}^{\\dagger}|0\\rangle$, can be written as" + ] + }, + { + "cell_type": "markdown", + "id": "5b79c4f4", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "|c'\\rangle=exp\\left\\{\\sum_{a>F}\\sum_{i\\le F}C_{ai}a_{a}^{\\dagger}a_{i}\\right\\}| c\\rangle\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "d6b65527", + "metadata": { + "editable": true + }, + "source": [ + "## Thouless' theorem\n", + "\n", + "Let us give a simple proof of Thouless' theorem. The theorem states that we can make a linear combination av particle-hole excitations with respect to a given reference state $\\vert c\\rangle$. With this linear combination, we can make a new Slater determinant $\\vert c'\\rangle $ which is not orthogonal to \n", + "$\\vert c\\rangle$, that is" + ] + }, + { + "cell_type": "markdown", + "id": "ac4b3531", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\langle c|c'\\rangle \\ne 0.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "5b3935a6", + "metadata": { + "editable": true + }, + "source": [ + "To show this we need some intermediate steps. The exponential product of two operators $\\exp{\\hat{A}}\\times\\exp{\\hat{B}}$ is equal to $\\exp{(\\hat{A}+\\hat{B})}$ only if the two operators commute, that is" + ] + }, + { + "cell_type": "markdown", + "id": "359cdced", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "[\\hat{A},\\hat{B}] = 0.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "a7248cd3", + "metadata": { + "editable": true + }, + "source": [ + "## Thouless' theorem\n", + "\n", + "If the operators do not commute, we need to resort to the [Baker-Campbell-Hauersdorf](http://www.encyclopediaofmath.org/index.php/Campbell%E2%80%93Hausdorff_formula). This relation states that" + ] + }, + { + "cell_type": "markdown", + "id": "c8c94128", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\exp{\\hat{C}}=\\exp{\\hat{A}}\\exp{\\hat{B}},\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "80411227", + "metadata": { + "editable": true + }, + "source": [ + "with" + ] + }, + { + "cell_type": "markdown", + "id": "9f32f8af", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\hat{C}=\\hat{A}+\\hat{B}+\\frac{1}{2}[\\hat{A},\\hat{B}]+\\frac{1}{12}[[\\hat{A},\\hat{B}],\\hat{B}]-\\frac{1}{12}[[\\hat{A},\\hat{B}],\\hat{A}]+\\dots\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "6e320bf5", + "metadata": { + "editable": true + }, + "source": [ + "## Thouless' theorem\n", + "\n", + "From these relations, we note that \n", + "in our expression for $|c'\\rangle$ we have commutators of the type" + ] + }, + { + "cell_type": "markdown", + "id": "10b7d7de", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "[a_{a}^{\\dagger}a_{i},a_{b}^{\\dagger}a_{j}],\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "9bb71d0b", + "metadata": { + "editable": true + }, + "source": [ + "and it is easy to convince oneself that these commutators, or higher powers thereof, are all zero. This means that we can write out our new representation of a Slater determinant as" + ] + }, + { + "cell_type": "markdown", + "id": "2a170a27", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "|c'\\rangle=exp\\left\\{\\sum_{a>F}\\sum_{i\\le F}C_{ai}a_{a}^{\\dagger}a_{i}\\right\\}| c\\rangle=\\prod_{i}\\left\\{1+\\sum_{a>F}C_{ai}a_{a}^{\\dagger}a_{i}+\\left(\\sum_{a>F}C_{ai}a_{a}^{\\dagger}a_{i}\\right)^2+\\dots\\right\\}| c\\rangle\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "1b2491cd", + "metadata": { + "editable": true + }, + "source": [ + "## Thouless' theorem\n", + "\n", + "We note that" + ] + }, + { + "cell_type": "markdown", + "id": "2afaed7f", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\prod_{i}\\sum_{a>F}C_{ai}a_{a}^{\\dagger}a_{i}\\sum_{b>F}C_{bi}a_{b}^{\\dagger}a_{i}| c\\rangle =0,\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "60eb88ac", + "metadata": { + "editable": true + }, + "source": [ + "and all higher-order powers of these combinations of creation and annihilation operators disappear \n", + "due to the fact that $(a_i)^n| c\\rangle =0$ when $n > 1$. This allows us to rewrite the expression for $|c'\\rangle $ as" + ] + }, + { + "cell_type": "markdown", + "id": "dc261b95", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "|c'\\rangle=\\prod_{i}\\left\\{1+\\sum_{a>F}C_{ai}a_{a}^{\\dagger}a_{i}\\right\\}| c\\rangle,\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "2f3b7509", + "metadata": { + "editable": true + }, + "source": [ + "which we can rewrite as" + ] + }, + { + "cell_type": "markdown", + "id": "3bc524a1", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "|c'\\rangle=\\prod_{i}\\left\\{1+\\sum_{a>F}C_{ai}a_{a}^{\\dagger}a_{i}\\right\\}| a^{\\dagger}_{i_1} a^{\\dagger}_{i_2} \\dots a^{\\dagger}_{i_n}|0\\rangle.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "4aa9bffb", + "metadata": { + "editable": true + }, + "source": [ + "## Thouless' theorem\n", + "\n", + "The last equation can be written as" + ] + }, + { + "cell_type": "markdown", + "id": "4606510c", + "metadata": { + "editable": true + }, + "source": [ + "\n", + "
    \n", + "\n", + "$$\n", + "\\begin{equation}\n", + "|c'\\rangle=\\prod_{i}\\left\\{1+\\sum_{a>F}C_{ai}a_{a}^{\\dagger}a_{i}\\right\\}| a^{\\dagger}_{i_1} a^{\\dagger}_{i_2} \\dots a^{\\dagger}_{i_n}|0\\rangle=\\left(1+\\sum_{a>F}C_{ai_1}a_{a}^{\\dagger}a_{i_1}\\right)a^{\\dagger}_{i_1} \n", + "\\label{_auto3} \\tag{10}\n", + "\\end{equation}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "afc83bdc", + "metadata": { + "editable": true + }, + "source": [ + "\n", + "
    \n", + "\n", + "$$\n", + "\\begin{equation} \n", + " \\times\\left(1+\\sum_{a>F}C_{ai_2}a_{a}^{\\dagger}a_{i_2}\\right)a^{\\dagger}_{i_2} \\dots |0\\rangle=\\prod_{i}\\left(a^{\\dagger}_{i}+\\sum_{a>F}C_{ai}a_{a}^{\\dagger}\\right)|0\\rangle.\n", + "\\label{_auto4} \\tag{11}\n", + "\\end{equation}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "f356c999", + "metadata": { + "editable": true + }, + "source": [ + "## New operators\n", + "\n", + "If we define a new creation operator" + ] + }, + { + "cell_type": "markdown", + "id": "db95d4f1", + "metadata": { + "editable": true + }, + "source": [ + "\n", + "
    \n", + "\n", + "$$\n", + "\\begin{equation}\n", + "b^{\\dagger}_{i}=a^{\\dagger}_{i}+\\sum_{a>F}C_{ai}a_{a}^{\\dagger}, \\label{eq:newb} \\tag{12}\n", + "\\end{equation}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "87dbcdb3", + "metadata": { + "editable": true + }, + "source": [ + "we have" + ] + }, + { + "cell_type": "markdown", + "id": "c75d6a3c", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "|c'\\rangle=\\prod_{i}b^{\\dagger}_{i}|0\\rangle=\\prod_{i}\\left(a^{\\dagger}_{i}+\\sum_{a>F}C_{ai}a_{a}^{\\dagger}\\right)|0\\rangle,\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "d11b7ede", + "metadata": { + "editable": true + }, + "source": [ + "meaning that the new representation of the Slater determinant in second quantization, $|c'\\rangle$, looks like our previous ones. However, this representation is not general enough since we have a restriction on the sum over single-particle states in Eq. ([12](#eq:newb)). The single-particle states have all to be above the Fermi level." + ] + }, + { + "cell_type": "markdown", + "id": "9a7eadb6", + "metadata": { + "editable": true + }, + "source": [ + "## Thouless' theorem\n", + "\n", + "The question then is whether we can construct a general representation of a Slater determinant with a creation operator" + ] + }, + { + "cell_type": "markdown", + "id": "f91e2af1", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\tilde{b}^{\\dagger}_{i}=\\sum_{p}f_{ip}a_{p}^{\\dagger},\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "0d7b0388", + "metadata": { + "editable": true + }, + "source": [ + "where $f_{ip}$ is a matrix element of a unitary matrix which transforms our creation and annihilation operators\n", + "$a^{\\dagger}$ and $a$ to $\\tilde{b}^{\\dagger}$ and $\\tilde{b}$. These new operators define a new representation of a Slater determinant as" + ] + }, + { + "cell_type": "markdown", + "id": "7447b7ad", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "|\\tilde{c}\\rangle=\\prod_{i}\\tilde{b}^{\\dagger}_{i}|0\\rangle.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "139c9d8c", + "metadata": { + "editable": true + }, + "source": [ + "## Showing that $|\\tilde{c}\\rangle= |c'\\rangle$\n", + "\n", + "We need to show that $|\\tilde{c}\\rangle= |c'\\rangle$. We need also to assume that the new state\n", + "is not orthogonal to $|c\\rangle$, that is $\\langle c| \\tilde{c}\\rangle \\ne 0$. From this it follows that" + ] + }, + { + "cell_type": "markdown", + "id": "49e9ec54", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\langle c| \\tilde{c}\\rangle=\\langle 0| a_{i_n}\\dots a_{i_1}\\left(\\sum_{p=i_1}^{i_n}f_{i_1p}a_{p}^{\\dagger} \\right)\\left(\\sum_{q=i_1}^{i_n}f_{i_2q}a_{q}^{\\dagger} \\right)\\dots \\left(\\sum_{t=i_1}^{i_n}f_{i_nt}a_{t}^{\\dagger} \\right)|0\\rangle,\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "2dec9b5f", + "metadata": { + "editable": true + }, + "source": [ + "which is nothing but the determinant $det(f_{ip})$ which we can, using the intermediate normalization condition, \n", + "normalize to one, that is" + ] + }, + { + "cell_type": "markdown", + "id": "866443b8", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "det(f_{ip})=1,\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "017413f7", + "metadata": { + "editable": true + }, + "source": [ + "meaning that $f$ has an inverse defined as (since we are dealing with orthogonal, and in our case unitary as well, transformations)" + ] + }, + { + "cell_type": "markdown", + "id": "b65103e1", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\sum_{k} f_{ik}f^{-1}_{kj} = \\delta_{ij},\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "b2bbb524", + "metadata": { + "editable": true + }, + "source": [ + "and" + ] + }, + { + "cell_type": "markdown", + "id": "f60edb9c", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\sum_{j} f^{-1}_{ij}f_{jk} = \\delta_{ik}.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "26eacac4", + "metadata": { + "editable": true + }, + "source": [ + "## Thouless' theorem\n", + "\n", + "Using these relations we can then define the linear combination of creation (and annihilation as well) \n", + "operators as" + ] + }, + { + "cell_type": "markdown", + "id": "a98573aa", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\sum_{i}f^{-1}_{ki}\\tilde{b}^{\\dagger}_{i}=\\sum_{i}f^{-1}_{ki}\\sum_{p=i_1}^{\\infty}f_{ip}a_{p}^{\\dagger}=a_{k}^{\\dagger}+\\sum_{i}\\sum_{p=i_{n+1}}^{\\infty}f^{-1}_{ki}f_{ip}a_{p}^{\\dagger}.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "5189dcd1", + "metadata": { + "editable": true + }, + "source": [ + "Defining" + ] + }, + { + "cell_type": "markdown", + "id": "c3ea6eef", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "c_{kp}=\\sum_{i \\le F}f^{-1}_{ki}f_{ip},\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "e25c8d0a", + "metadata": { + "editable": true + }, + "source": [ + "we can redefine" + ] + }, + { + "cell_type": "markdown", + "id": "7a237674", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "a_{k}^{\\dagger}+\\sum_{i}\\sum_{p=i_{n+1}}^{\\infty}f^{-1}_{ki}f_{ip}a_{p}^{\\dagger}=a_{k}^{\\dagger}+\\sum_{p=i_{n+1}}^{\\infty}c_{kp}a_{p}^{\\dagger}=b_k^{\\dagger},\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "4aff5174", + "metadata": { + "editable": true + }, + "source": [ + "our starting point." + ] + }, + { + "cell_type": "markdown", + "id": "b1706653", + "metadata": { + "editable": true + }, + "source": [ + "## Thouless' theorem\n", + "\n", + "We have shown that our general representation of a Slater determinant" + ] + }, + { + "cell_type": "markdown", + "id": "d88e90f9", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "|\\tilde{c}\\rangle=\\prod_{i}\\tilde{b}^{\\dagger}_{i}|0\\rangle=|c'\\rangle=\\prod_{i}b^{\\dagger}_{i}|0\\rangle,\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "014787c3", + "metadata": { + "editable": true + }, + "source": [ + "with" + ] + }, + { + "cell_type": "markdown", + "id": "081709df", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "b_k^{\\dagger}=a_{k}^{\\dagger}+\\sum_{p=i_{n+1}}^{\\infty}c_{kp}a_{p}^{\\dagger}.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "e3509df9", + "metadata": { + "editable": true + }, + "source": [ + "## Thouless' theorem\n", + "\n", + "This means that we can actually write an ansatz for the ground state of the system as a linear combination of\n", + "terms which contain the ansatz itself $|c\\rangle$ with an admixture from an infinity of one-particle-one-hole states. The latter has important consequences when we wish to interpret the Hartree-Fock equations and their stability. We can rewrite the new representation as" + ] + }, + { + "cell_type": "markdown", + "id": "f9fc2849", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "|c'\\rangle = |c\\rangle+|\\delta c\\rangle,\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "0188c4e2", + "metadata": { + "editable": true + }, + "source": [ + "where $|\\delta c\\rangle$ can now be interpreted as a small variation. If we approximate this term with \n", + "contributions from one-particle-one-hole (*1p-1h*) states only, we arrive at" + ] + }, + { + "cell_type": "markdown", + "id": "d66157f1", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "|c'\\rangle = \\left(1+\\sum_{ai}\\delta C_{ai}a_{a}^{\\dagger}a_i\\right)|c\\rangle.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "7c2e62d5", + "metadata": { + "editable": true + }, + "source": [ + "## Thouless' theorem\n", + "\n", + "In our derivation of the Hartree-Fock equations we have shown that" + ] + }, + { + "cell_type": "markdown", + "id": "99a52616", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\langle \\delta c| \\hat{H} | c\\rangle =0,\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "0687a547", + "metadata": { + "editable": true + }, + "source": [ + "which means that we have to satisfy" + ] + }, + { + "cell_type": "markdown", + "id": "dbb59f31", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\langle c|\\sum_{ai}\\delta C_{ai}\\left\\{a_{a}^{\\dagger}a_i\\right\\} \\hat{H} | c\\rangle =0.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "926493ec", + "metadata": { + "editable": true + }, + "source": [ + "With this as a background, we are now ready to study the stability of the Hartree-Fock equations.\n", + "This is the topic for week 40." + ] } ], "metadata": {}, diff --git a/doc/pub/week39/pdf/week39.pdf b/doc/pub/week39/pdf/week39.pdf index 7e79400e..521b4c4a 100644 Binary files a/doc/pub/week39/pdf/week39.pdf and b/doc/pub/week39/pdf/week39.pdf differ diff --git a/doc/src/week39/week39.do.txt b/doc/src/week39/week39.do.txt index ee1746f5..8f8e8cae 100644 --- a/doc/src/week39/week39.do.txt +++ b/doc/src/week39/week39.do.txt @@ -16,8 +16,8 @@ DATE: Week 39, September 223-27 o Friday: * Hartree-Fock theory and mean field theories -# * "Video of lecture":"https://youtu.be/fqWAeBiZ_zg" -# * "Whiteboard notes":"https://github.com/ManyBodyPhysics/FYS4480/blob/master/doc/HandwrittenNotes/2024/NotesSeptember27.pdf" + * "Video of lecture":"https://youtu.be/" + * "Whiteboard notes":"https://github.com/ManyBodyPhysics/FYS4480/blob/master/doc/HandwrittenNotes/2024/NotesSeptember27.pdf" * Lecture Material: These slides, handwritten notes * Sixth exercise set at URL:"https://github.com/ManyBodyPhysics/FYS4480/blob/master/doc/Exercises/2024/ExercisesWeek39.pdf" @@ -1703,3 +1703,272 @@ and + +!split +===== Hartree-Fock in second quantization and stability of HF solution ===== + +We wish now to derive the Hartree-Fock equations using our second-quantized formalism and study the stability of the equations. +Our ansatz for the ground state of the system is approximated as (this is our representation of a Slater determinant in second quantization) +!bt +\[ +|\Phi_0\rangle = |c\rangle = a^{\dagger}_i a^{\dagger}_j \dots a^{\dagger}_l|0\rangle. +\] +!et +We wish to determine $\hat{u}^{HF}$ so that +$E_0^{HF}= \langle c|\hat{H}| c\rangle$ becomes a local minimum. + +In our analysis here we will need Thouless' theorem, which states that +an arbitrary Slater determinant $|c'\rangle$ which is not orthogonal to a determinant +$| c\rangle ={\displaystyle\prod_{i=1}^{n}} +a_{\alpha_{i}}^{\dagger}|0\rangle$, can be written as +!bt +\[ +|c'\rangle=exp\left\{\sum_{a>F}\sum_{i\le F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle +\] +!et + + + +!split +===== Thouless' theorem ===== + + +Let us give a simple proof of Thouless' theorem. The theorem states that we can make a linear combination av particle-hole excitations with respect to a given reference state $\vert c\rangle$. With this linear combination, we can make a new Slater determinant $\vert c'\rangle $ which is not orthogonal to +$\vert c\rangle$, that is +!bt +\[ +\langle c|c'\rangle \ne 0. +\] +!et +To show this we need some intermediate steps. The exponential product of two operators $\exp{\hat{A}}\times\exp{\hat{B}}$ is equal to $\exp{(\hat{A}+\hat{B})}$ only if the two operators commute, that is +!bt +\[ +[\hat{A},\hat{B}] = 0. +\] +!et + +!split +===== Thouless' theorem ===== + + +If the operators do not commute, we need to resort to the "Baker-Campbell-Hauersdorf":"http://www.encyclopediaofmath.org/index.php/Campbell%E2%80%93Hausdorff_formula". This relation states that +!bt +\[ +\exp{\hat{C}}=\exp{\hat{A}}\exp{\hat{B}}, +\] +!et +with +!bt +\[ +\hat{C}=\hat{A}+\hat{B}+\frac{1}{2}[\hat{A},\hat{B}]+\frac{1}{12}[[\hat{A},\hat{B}],\hat{B}]-\frac{1}{12}[[\hat{A},\hat{B}],\hat{A}]+\dots +\] +!et + + +!split +===== Thouless' theorem ===== + +From these relations, we note that +in our expression for $|c'\rangle$ we have commutators of the type +!bt +\[ +[a_{a}^{\dagger}a_{i},a_{b}^{\dagger}a_{j}], +\] +!et +and it is easy to convince oneself that these commutators, or higher powers thereof, are all zero. This means that we can write out our new representation of a Slater determinant as +!bt +\[ +|c'\rangle=exp\left\{\sum_{a>F}\sum_{i\le F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}+\left(\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right)^2+\dots\right\}| c\rangle +\] +!et + + + +!split +===== Thouless' theorem ===== + +We note that +!bt +\[ +\prod_{i}\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\sum_{b>F}C_{bi}a_{b}^{\dagger}a_{i}| c\rangle =0, +\] +!et +and all higher-order powers of these combinations of creation and annihilation operators disappear +due to the fact that $(a_i)^n| c\rangle =0$ when $n > 1$. This allows us to rewrite the expression for $|c'\rangle $ as +!bt +\[ +|c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle, +\] +!et +which we can rewrite as +!bt +\[ +|c'\rangle=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle. +\] +!et + + +!split +===== Thouless' theorem ===== + +The last equation can be written as +!bt +\begin{align} +|c'\rangle&=\prod_{i}\left\{1+\sum_{a>F}C_{ai}a_{a}^{\dagger}a_{i}\right\}| a^{\dagger}_{i_1} a^{\dagger}_{i_2} \dots a^{\dagger}_{i_n}|0\rangle=\left(1+\sum_{a>F}C_{ai_1}a_{a}^{\dagger}a_{i_1}\right)a^{\dagger}_{i_1} \\ +& \times\left(1+\sum_{a>F}C_{ai_2}a_{a}^{\dagger}a_{i_2}\right)a^{\dagger}_{i_2} \dots |0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle. +\end{align} +!et + + +!split +===== New operators ===== + + +If we define a new creation operator +!bt +\begin{equation} +b^{\dagger}_{i}=a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}, label{eq:newb} +\end{equation} +!et +we have +!bt +\[ +|c'\rangle=\prod_{i}b^{\dagger}_{i}|0\rangle=\prod_{i}\left(a^{\dagger}_{i}+\sum_{a>F}C_{ai}a_{a}^{\dagger}\right)|0\rangle, +\] +!et +meaning that the new representation of the Slater determinant in second quantization, $|c'\rangle$, looks like our previous ones. However, this representation is not general enough since we have a restriction on the sum over single-particle states in Eq.~(ref{eq:newb}). The single-particle states have all to be above the Fermi level. + + +!split +===== Thouless' theorem ===== + +The question then is whether we can construct a general representation of a Slater determinant with a creation operator +!bt +\[ +\tilde{b}^{\dagger}_{i}=\sum_{p}f_{ip}a_{p}^{\dagger}, +\] +!et +where $f_{ip}$ is a matrix element of a unitary matrix which transforms our creation and annihilation operators +$a^{\dagger}$ and $a$ to $\tilde{b}^{\dagger}$ and $\tilde{b}$. These new operators define a new representation of a Slater determinant as +!bt +\[ +|\tilde{c}\rangle=\prod_{i}\tilde{b}^{\dagger}_{i}|0\rangle. +\] +!et + + + +!split +===== Showing that $|\tilde{c}\rangle= |c'\rangle$ ===== + + + +We need to show that $|\tilde{c}\rangle= |c'\rangle$. We need also to assume that the new state +is not orthogonal to $|c\rangle$, that is $\langle c| \tilde{c}\rangle \ne 0$. From this it follows that +!bt +\[ +\langle c| \tilde{c}\rangle=\langle 0| a_{i_n}\dots a_{i_1}\left(\sum_{p=i_1}^{i_n}f_{i_1p}a_{p}^{\dagger} \right)\left(\sum_{q=i_1}^{i_n}f_{i_2q}a_{q}^{\dagger} \right)\dots \left(\sum_{t=i_1}^{i_n}f_{i_nt}a_{t}^{\dagger} \right)|0\rangle, +\] +!et +which is nothing but the determinant $det(f_{ip})$ which we can, using the intermediate normalization condition, +normalize to one, that is +!bt +\[ +det(f_{ip})=1, +\] +!et +meaning that $f$ has an inverse defined as (since we are dealing with orthogonal, and in our case unitary as well, transformations) +!bt +\[ +\sum_{k} f_{ik}f^{-1}_{kj} = \delta_{ij}, +\] +!et +and +!bt +\[ +\sum_{j} f^{-1}_{ij}f_{jk} = \delta_{ik}. +\] +!et + + + +!split +===== Thouless' theorem ===== + +Using these relations we can then define the linear combination of creation (and annihilation as well) +operators as +!bt +\[ +\sum_{i}f^{-1}_{ki}\tilde{b}^{\dagger}_{i}=\sum_{i}f^{-1}_{ki}\sum_{p=i_1}^{\infty}f_{ip}a_{p}^{\dagger}=a_{k}^{\dagger}+\sum_{i}\sum_{p=i_{n+1}}^{\infty}f^{-1}_{ki}f_{ip}a_{p}^{\dagger}. +\] +!et +Defining +!bt +\[ +c_{kp}=\sum_{i \le F}f^{-1}_{ki}f_{ip}, +\] +!et +we can redefine +!bt +\[ +a_{k}^{\dagger}+\sum_{i}\sum_{p=i_{n+1}}^{\infty}f^{-1}_{ki}f_{ip}a_{p}^{\dagger}=a_{k}^{\dagger}+\sum_{p=i_{n+1}}^{\infty}c_{kp}a_{p}^{\dagger}=b_k^{\dagger}, +\] +!et +our starting point. + + +!split +===== Thouless' theorem ===== + +We have shown that our general representation of a Slater determinant +!bt +\[ +|\tilde{c}\rangle=\prod_{i}\tilde{b}^{\dagger}_{i}|0\rangle=|c'\rangle=\prod_{i}b^{\dagger}_{i}|0\rangle, +\] +!et +with +!bt +\[ +b_k^{\dagger}=a_{k}^{\dagger}+\sum_{p=i_{n+1}}^{\infty}c_{kp}a_{p}^{\dagger}. +\] +!et + + +!split +===== Thouless' theorem ===== + + +This means that we can actually write an ansatz for the ground state of the system as a linear combination of +terms which contain the ansatz itself $|c\rangle$ with an admixture from an infinity of one-particle-one-hole states. The latter has important consequences when we wish to interpret the Hartree-Fock equations and their stability. We can rewrite the new representation as +!bt +\[ +|c'\rangle = |c\rangle+|\delta c\rangle, +\] +!et +where $|\delta c\rangle$ can now be interpreted as a small variation. If we approximate this term with +contributions from one-particle-one-hole (*1p-1h*) states only, we arrive at +!bt +\[ +|c'\rangle = \left(1+\sum_{ai}\delta C_{ai}a_{a}^{\dagger}a_i\right)|c\rangle. +\] +!et + + +!split +===== Thouless' theorem ===== + +In our derivation of the Hartree-Fock equations we have shown that +!bt +\[ +\langle \delta c| \hat{H} | c\rangle =0, +\] +!et +which means that we have to satisfy +!bt +\[ +\langle c|\sum_{ai}\delta C_{ai}\left\{a_{a}^{\dagger}a_i\right\} \hat{H} | c\rangle =0. +\] +!et +With this as a background, we are now ready to study the stability of the Hartree-Fock equations. +This is the topic for week 40. + diff --git a/doc/src/week39/week40add.do.txt b/doc/src/week39/week40add.do.txt index a6e8a4b8..fbe794dc 100644 --- a/doc/src/week39/week40add.do.txt +++ b/doc/src/week39/week40add.do.txt @@ -1,1409 +1,3 @@ -TITLE: Week 39: Full configuration interaction theory -AUTHOR: Morten Hjorth-Jensen {copyright, 1999-present|CC BY-NC} at Department of Physics and Center for Computing in Science Education, University of Oslo, Norway & Department of Physics and Astronomy and Facility for Rare Isotope Beams, Michigan State University, USA -DATE: Week 39, September 223-27 - -!split -===== Week 39, September 23-27, 2024 ===== - -* Topics to be covered - o Thursday: - * Full configuration interaction (FCI) theory - * Diagrammatic representation - * Lipkin model as an example of applications of FCI theory -# * "Video of lecture":"https://youtu.be/AnAbRonMqPc" -# * "Whiteboard notes":"https://github.com/ManyBodyPhysics/FYS4480/blob/master/doc/HandwrittenNotes/2023/LectureSeptember28.pdf" - -o Friday: - * Hartree-Fock theory and mean field theories -# * "Video of lecture":"https://youtu.be/fqWAeBiZ_zg" -# * "Whiteboard notes":"https://github.com/ManyBodyPhysics/FYS4480/blob/master/doc/HandwrittenNotes/2023/LectureSeptember29.pdf" -* Lecture Material: These slides, handwritten notes -* Sixth exercise set at URL:"https://github.com/ManyBodyPhysics/FYS4480/blob/master/doc/Exercises/2024/ExercisesWeek39.pdf" - - - -!split -===== Full Configuration Interaction Theory ===== - -We have defined the ansatz for the ground state as -!bt -\[ -|\Phi_0\rangle = \left(\prod_{i\le F}\hat{a}_{i}^{\dagger}\right)|0\rangle, -\] -!et -where the index $i$ defines different single-particle states up to the Fermi level. We have assumed that we have $N$ fermions. - -!split -===== One-particle-one-hole state ===== - -A given one-particle-one-hole ($1p1h$) state can be written as -!bt -\[ -|\Phi_i^a\rangle = \hat{a}_{a}^{\dagger}\hat{a}_i|\Phi_0\rangle, -\] -!et -while a $2p2h$ state can be written as -!bt -\[ -|\Phi_{ij}^{ab}\rangle = \hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_j\hat{a}_i|\Phi_0\rangle, -\] -!et -and a general $NpNh$ state as -!bt -\[ -|\Phi_{ijk\dots}^{abc\dots}\rangle = \hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_{c}^{\dagger}\dots\hat{a}_k\hat{a}_j\hat{a}_i|\Phi_0\rangle. -\] -!et - - -!split -===== Full Configuration Interaction Theory ===== - -We can then expand our exact state function for the ground state -as -!bt -\[ -|\Psi_0\rangle=C_0|\Phi_0\rangle+\sum_{ai}C_i^a|\Phi_i^a\rangle+\sum_{abij}C_{ij}^{ab}|\Phi_{ij}^{ab}\rangle+\dots -=(C_0+\hat{C})|\Phi_0\rangle, -\] -!et -where we have introduced the so-called correlation operator -!bt -\[ -\hat{C}=\sum_{ai}C_i^a\hat{a}_{a}^{\dagger}\hat{a}_i +\sum_{abij}C_{ij}^{ab}\hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_j\hat{a}_i+\dots -\] -!et - -!split -===== Intermediate normalization ===== -Since the normalization of $\Psi_0$ is at our disposal and since $C_0$ is by hypothesis non-zero, we may arbitrarily set $C_0=1$ with -corresponding proportional changes in all other coefficients. Using this so-called intermediate normalization we have -!bt -\[ -\langle \Psi_0 | \Phi_0 \rangle = \langle \Phi_0 | \Phi_0 \rangle = 1, -\] -!et -resulting in -!bt -\[ -|\Psi_0\rangle=(1+\hat{C})|\Phi_0\rangle. -\] -!et - - -!split -===== Full Configuration Interaction Theory ===== - -We rewrite -!bt -\[ -|\Psi_0\rangle=C_0|\Phi_0\rangle+\sum_{ai}C_i^a|\Phi_i^a\rangle+\sum_{abij}C_{ij}^{ab}|\Phi_{ij}^{ab}\rangle+\dots, -\] -!et -in a more compact form as -!bt -\[ -|\Psi_0\rangle=\sum_{PH}C_H^P\Phi_H^P=\left(\sum_{PH}C_H^P\hat{A}_H^P\right)|\Phi_0\rangle, -\] -!et -where $H$ stands for $0,1,\dots,n$ hole states and $P$ for $0,1,\dots,n$ particle states. - -!split -===== Compact expression of correlated part ===== - -We have introduced the operator $\hat{A}_H^P$ which contains an equal number of creation and annihilation operators. - -Our requirement of unit normalization gives -!bt -\[ -\langle \Psi_0 | \Phi_0 \rangle = \sum_{PH}|C_H^P|^2= 1, -\] -!et -and the energy can be written as -!bt -\[ -E= \langle \Psi_0 | \hat{H} |\Psi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}. -\] -!et - - -!split -===== Full Configuration Interaction Theory ===== - -Normally -!bt -\[ -E= \langle \Psi_0 | \hat{H} |\Psi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}, -\] -!et -is solved by diagonalization setting up the Hamiltonian matrix defined by the basis of all possible Slater determinants. A diagonalization -# to do: add text about Rayleigh-Ritz -is equivalent to finding the variational minimum of -!bt -\[ - \langle \Psi_0 | \hat{H} |\Psi_0 \rangle-\lambda \langle \Psi_0 |\Psi_0 \rangle, -\] -!et -where $\lambda$ is a variational multiplier to be identified with the energy of the system. - -!split -===== Minimization ===== - -The minimization process results in -!bt -\[ -\delta\left[ \langle \Psi_0 | \hat{H} |\Psi_0 \rangle-\lambda \langle \Psi_0 |\Psi_0 \rangle\right]=0, -\] -!et -and since the coefficients $\delta[C_H^{*P}]$ and $\delta[C_{H'}^{P'}]$ are complex conjugates it is necessary and sufficient to require the quantities that multiply with $\delta[C_H^{*P}]$ to vanish. Varying the latter coefficients we have then -!bt -\[ -\sum_{P'H'}\left\{\delta[C_H^{*P}]\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}- -\lambda( \delta[C_H^{*P}]C_{H'}^{P'}]\right\} = 0. -\] -!et - - - - -!split -===== Full Configuration Interaction Theory ===== -This leads to -!bt -\[ -\sum_{P'H'}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}-\lambda C_H^{P}=0, -\] -!et -for all sets of $P$ and $H$. - -If we then multiply by the corresponding $C_H^{*P}$ and sum over $PH$ we obtain -!bt -\[ -\sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}-\lambda\sum_{PH}|C_H^P|^2=0, -\] -!et -leading to the identification $\lambda = E$. - - -!split -===== Full Configuration Interaction Theory ===== - -An alternative way to derive the last equation is to start from -!bt -\[ -(\hat{H} -E)|\Psi_0\rangle = (\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0, -\] -!et -and if this equation is successively projected against all $\Phi_H^P$ in the expansion of $\Psi$, then the last equation on the previous slide -results. As stated previously, one solves this equation normally by diagonalization. If we are able to solve this equation exactly (that is -numerically exactly) in a large Hilbert space (it will be truncated in terms of the number of single-particle states included in the definition -of Slater determinants), it can then serve as a benchmark for other many-body methods which approximate the correlation operator -$\hat{C}$. - - - - -!split -===== FCI and the exponential growth ===== - -Full configuration interaction theory calculations provide in principle, if we can diagonalize numerically, all states of interest. The dimensionality of the problem explodes however quickly. - -The total number of Slater determinants which can be built with say $N$ neutrons distributed among $n$ single particle states is -!bt -\[ -\left (\begin{array}{c} n \\ N\end{array} \right) =\frac{n!}{(n-N)!N!}. -\] -!et - - -For a model space which comprises the first for major shells only $0s$, $0p$, $1s0d$ and $1p0f$ we have $40$ single particle states for neutrons and protons. For the eight neutrons of oxygen-16 we would then have -!bt -\[ -\left (\begin{array}{c} 40 \\ 8\end{array} \right) =\frac{40!}{(32)!8!}\sim 10^{9}, -\] -!et -and multiplying this with the number of proton Slater determinants we end up with approximately with a dimensionality $d$ of $d\sim 10^{18}$. - - - -!split -===== Exponential wall ===== -!bblock -This number can be reduced if we look at specific symmetries only. However, the dimensionality explodes quickly! - -* For Hamiltonian matrices of dimensionalities which are smaller than $d\sim 10^5$, we would use so-called direct methods for diagonalizing the Hamiltonian matrix -* For larger dimensionalities iterative eigenvalue solvers like Lanczos' method are used. The most efficient codes at present can handle matrices of $d\sim 10^{10}$. -!eblock - - -!split -===== A non-practical way of solving the eigenvalue problem ===== - -To see this, we look at the contributions arising from -!bt -\[ -\langle \Phi_H^P | = \langle \Phi_0|, -\] -!et -that is we multiply with $\langle \Phi_0 |$ -from the left in -!bt -\[ -(\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. -\] -!et - -!split -===== Using the Condon-Slater rule ===== -If we assume that we have a two-body operator at most, using the Condon-Slater rule gives then an equation for the -correlation energy in terms of $C_i^a$ and $C_{ij}^{ab}$ only. We get then -!bt -\[ -\langle \Phi_0 | \hat{H} -E| \Phi_0\rangle + \sum_{ai}\langle \Phi_0 | \hat{H} -E|\Phi_{i}^{a} \rangle C_{i}^{a}+ -\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0, -\] -!et -or -!bt -\[ -E-E_0 =\Delta E=\sum_{ai}\langle \Phi_0 | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ -\sum_{abij}\langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}, -\] -!et -where the energy $E_0$ is the reference energy and $\Delta E$ defines the so-called correlation energy. -The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian. - - - -!split -===== A non-practical way of solving the eigenvalue problem ===== - -To see this, we look at the contributions arising from -!bt -\[ -\langle \Phi_H^P | = \langle \Phi_0|, -\] -!et -that is we multiply with $\langle \Phi_0 |$ -from the left in -!bt -\[ -(\hat{H} -E)\sum_{P'H'}C_{H'}^{P'}|\Phi_{H'}^{P'} \rangle=0. -\] -!et - - - -!split -===== A non-practical way of solving the eigenvalue problem ===== - -If we assume that we have a two-body operator at most, Slater's rule gives then an equation for the -correlation energy in terms of $C_i^a$ and $C_{ij}^{ab}$ only. We get then -!bt -\[ -\langle \Phi_0 | \hat{H} -E| \Phi_0\rangle + \sum_{ai}\langle \Phi_0 | \hat{H} -E|\Phi_{i}^{a} \rangle C_{i}^{a}+ -\sum_{abij}\langle \Phi_0 | \hat{H} -E|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}=0. -\] -!et - -!split -===== Slight rewrite ===== - -Which we can rewrite -!bt -\[ -E-E_0 =\Delta E=\sum_{ai}\langle \Phi_0 | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ -\sum_{abij}\langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}, -\] -!et -where the energy $E_0$ is the reference energy and $\Delta E$ defines the so-called correlation energy. -The single-particle basis functions could be the results of a Hartree-Fock calculation or just the eigenstates of the non-interacting part of the Hamiltonian. - - - - -!split -===== Rewriting the FCI equation ===== -!bblock -In our discussions of the Hartree-Fock method planned for week 39, -we are going to compute the elements $\langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle $ and $\langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab}\rangle$. If we are using a Hartree-Fock basis, then these quantities result in -$\langle \Phi_0 | \hat{H}|\Phi_{i}^{a}\rangle=0$ and we are left with a *correlation energy* given by -!bt -\[ -E-E_0 =\Delta E^{HF}=\sum_{abij}\langle \Phi_0 | \hat{H}|\Phi_{ij}^{ab} \rangle C_{ij}^{ab}. -\] -!et -!eblock - -!split -===== Rewriting the FCI equation ===== -!bblock -Inserting the various matrix elements we can rewrite the previous equation as -!bt -\[ -\Delta E=\sum_{ai}\langle i| \hat{f}|a \rangle C_{i}^{a}+ -\sum_{abij}\langle ij | \hat{v}| ab \rangle C_{ij}^{ab}. -\] -!et -This equation determines the correlation energy but not the coefficients $C$. -!eblock - -!split -===== Rewriting the FCI equation, does not stop here ===== - -We need more equations. Our next step is to set up -!bt -\[ -\langle \Phi_i^a | \hat{H} -E| \Phi_0\rangle + \sum_{bj}\langle \Phi_i^a | \hat{H} -E|\Phi_{j}^{b} \rangle C_{j}^{b}+ -\sum_{bcjk}\langle \Phi_i^a | \hat{H} -E|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+ -\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0. -\] -!et - -!split -===== Finding the coefficients ===== -This equation will allow us to find an expression for the coefficents $C_i^a$ since we can rewrite this equation as -!bt -\[ -\langle i | \hat{f}| a\rangle +\langle \Phi_i^a | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ \sum_{bj\ne ai}\langle \Phi_i^a | \hat{H}|\Phi_{j}^{b} \rangle C_{j}^{b}+ -\sum_{bcjk}\langle \Phi_i^a | \hat{H}|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+ -\sum_{bcdjkl}\langle \Phi_i^a | \hat{H}|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=EC_i^a. -\] -!et - - -!split -===== Rewriting the FCI equation ===== -!bblock -We see that on the right-hand side we have the energy $E$. This leads to a non-linear equation in the unknown coefficients. -These equations are normally solved iteratively ( that is we can start with a guess for the coefficients $C_i^a$). A common choice is to use perturbation theory for the first guess, setting thereby -!bt -\[ - C_{i}^{a}=\frac{\langle i | \hat{f}| a\rangle}{\epsilon_i-\epsilon_a}. -\] -!et -!eblock - -!split -===== Rewriting the FCI equation, more to add ===== -!bblock -The observant reader will however see that we need an equation for $C_{jk}^{bc}$ and $C_{jkl}^{bcd}$ as well. -To find equations for these coefficients we need then to continue our multiplications from the left with the various -$\Phi_{H}^P$ terms. - - -For $C_{jk}^{bc}$ we need then -!bt -\[ -\langle \Phi_{ij}^{ab} | \hat{H} -E| \Phi_0\rangle + \sum_{kc}\langle \Phi_{ij}^{ab} | \hat{H} -E|\Phi_{k}^{c} \rangle C_{k}^{c}+ -\] -!et -!bt -\[ -\sum_{cdkl}\langle \Phi_{ij}^{ab} | \hat{H} -E|\Phi_{kl}^{cd} \rangle C_{kl}^{cd}+\sum_{cdeklm}\langle \Phi_{ij}^{ab} | \hat{H} -E|\Phi_{klm}^{cde} \rangle C_{klm}^{cde}+\sum_{cdefklmn}\langle \Phi_{ij}^{ab} | \hat{H} -E|\Phi_{klmn}^{cdef} \rangle C_{klmn}^{cdef}=0, -\] -!et -and we can isolate the coefficients $C_{kl}^{cd}$ in a similar way as we did for the coefficients $C_{i}^{a}$. -!eblock - - - -!split -===== Rewriting the FCI equation, more to add ===== -!bblock -A standard choice for the first iteration is to set -!bt -\[ -C_{ij}^{ab} =\frac{\langle ij \vert \hat{v} \vert ab \rangle}{\epsilon_i+\epsilon_j-\epsilon_a-\epsilon_b}. -\] -!et -At the end we can rewrite our solution of the Schroedinger equation in terms of $n$ coupled equations for the coefficients $C_H^P$. -This is a very cumbersome way of solving the equation. However, by using this iterative scheme we can illustrate how we can compute the -various terms in the wave operator or correlation operator $\hat{C}$. We will later identify the calculation of the various terms $C_H^P$ -as parts of different many-body approximations to full CI. In particular, we can relate this non-linear scheme with Coupled Cluster theory and -many-body perturbation theory. -!eblock - - -!split -===== Summarizing FCI and bringing in approximative methods ===== -!bblock - -If we can diagonalize large matrices, FCI is the method of choice since: -* It gives all eigenvalues, ground state and excited states -* The eigenvectors are obtained directly from the coefficients $C_H^P$ which result from the diagonalization -* We can compute easily expectation values of other operators, as well as transition probabilities -* Correlations are easy to understand in terms of contributions to a given operator beyond the Hartree-Fock contribution. -!eblock - -!split -===== Definition of the correlation energy ===== - -The correlation energy is defined as, with a two-body Hamiltonian, -!bt -\[ -\Delta E=\sum_{ai}\langle i| \hat{f}|a \rangle C_{i}^{a}+ -\sum_{abij}\langle ij | \hat{v}| ab \rangle C_{ij}^{ab}. -\] -!et -The coefficients $C$ result from the solution of the eigenvalue problem. - -!split -===== Ground state energy ===== -The energy of say the ground state is then -!bt -\[ -E=E_{ref}+\Delta E, -\] -!et -where the so-called reference energy is the energy we obtain from a Hartree-Fock calculation, that is -!bt -\[ -E_{ref}=\langle \Phi_0 \vert \hat{H} \vert \Phi_0 \rangle. -\] -!et - - - - - -!split -===== Why Hartree-Fock? Derivation of Hartree-Fock equations in coordinate space ===== - -Hartree-Fock (HF) theory is an algorithm for finding an approximative expression for the ground state of a given Hamiltonian. The basic ingredients are - * Define a single-particle basis $\{\psi_{\alpha}\}$ so that -!bt -\[ -\hat{h}^{\mathrm{HF}}\psi_{\alpha} = \varepsilon_{\alpha}\psi_{\alpha} -\] -!et -with the Hartree-Fock Hamiltonian defined as -!bt -\[ -\hat{h}^{\mathrm{HF}}=\hat{t}+\hat{u}_{\mathrm{ext}}+\hat{u}^{\mathrm{HF}} -\] -!et - * The term $\hat{u}^{\mathrm{HF}}$ is a single-particle potential to be determined by the HF algorithm. - * The HF algorithm means to choose $\hat{u}^{\mathrm{HF}}$ in order to have -!bt -\[ \langle \hat{H} \rangle = E^{\mathrm{HF}}= \langle \Phi_0 | \hat{H}|\Phi_0 \rangle -\] -!et -that is to find a local minimum with a Slater determinant $\Phi_0$ being the ansatz for the ground state. - * The variational principle ensures that $E^{\mathrm{HF}} \ge E_0$, with $E_0$ the exact ground state energy. - - -!split -===== Why Hartree-Fock theory ===== - -We will show that the Hartree-Fock Hamiltonian $\hat{h}^{\mathrm{HF}}$ equals our definition of the operator $\hat{f}$ discussed in connection with the new definition of the normal-ordered Hamiltonian (see later lectures), that is we have, for a specific matrix element -!bt -\[ -\langle p |\hat{h}^{\mathrm{HF}}| q \rangle =\langle p |\hat{f}| q \rangle=\langle p|\hat{t}+\hat{u}_{\mathrm{ext}}|q \rangle +\sum_{i\le F} \langle pi | \hat{V} | qi\rangle_{AS}, -\] -!et -meaning that -!bt -\[ -\langle p|\hat{u}^{\mathrm{HF}}|q\rangle = \sum_{i\le F} \langle pi | \hat{V} | qi\rangle_{AS}. -\] -!et - - -!split -===== Why Hartree-Fock theory ===== - -The so-called Hartree-Fock potential $\hat{u}^{\mathrm{HF}}$ brings an -explicit medium dependence due to the summation over all -single-particle states below the Fermi level $F$. It brings also in an -explicit dependence on the two-body interaction (in nuclear physics we -can also have complicated three- or higher-body forces). The two-body -interaction, with its contribution from the other bystanding fermions, -creates an effective mean field in which a given fermion moves, in -addition to the external potential $\hat{u}_{\mathrm{ext}}$ which -confines the motion of the fermion. For systems like nuclei, there is -no external confining potential. Nuclei are examples of self-bound -systems, where the binding arises due to the intrinsic nature of the -strong force. For nuclear systems thus, there would be no external -one-body potential in the Hartree-Fock Hamiltonian. - -!split -===== Variational Calculus and Lagrangian Multipliers ===== - -The calculus of variations involves -problems where the quantity to be minimized or maximized is an integral. - -In the general case we have an integral of the type -!bt -\[ -E[\Phi]= \int_a^b f(\Phi(x),\frac{\partial \Phi}{\partial x},x)dx, -\] -!et -where $E$ is the quantity which is sought minimized or maximized. - - -!split -===== Variational Calculus and Lagrangian Multipliers ===== - -The problem is that although $f$ is a function of the variables -$\Phi$, $\partial \Phi/\partial x$ and $x$, the exact dependence of -$\Phi$ on $x$ is not known. This means again that even though the -integral has fixed limits $a$ and $b$, the path of integration is not -known. In our case the unknown quantities are the single-particle wave -functions and we wish to choose an integration path which makes the -functional $E[\Phi]$ stationary. This means that we want to find -minima, or maxima or saddle points. In physics we search normally for -minima. Our task is therefore to find the minimum of $E[\Phi]$ so -that its variation $\delta E$ is zero subject to specific -constraints. In our case the constraints appear as the integral which -expresses the orthogonality of the single-particle wave functions. -The constraints can be treated via the technique of Lagrangian -multipliers - -!split -===== Variational Calculus and Lagrangian Multipliers ===== - -Let us specialize to the expectation value of the energy for one particle in three-dimensions. -This expectation value reads -!bt -\[ - E=\int dxdydz \psi^*(x,y,z) \hat{H} \psi(x,y,z), -\] -!et -with the constraint -!bt -\[ - \int dxdydz \psi^*(x,y,z) \psi(x,y,z)=1, -\] -!et -and a Hamiltonian -!bt -\[ -\hat{H}=-\frac{1}{2}\nabla^2+V(x,y,z). -\] -!et - - -!split -===== Variational Calculus and Lagrangian Multipliers ===== - -We will, for the sake of notational convenience, skip the variables $x,y,z$ below, and write for example $V(x,y,z)=V$. - -The integral involving the kinetic energy can be written as, with the function $\psi$ vanishing -strongly for large values of $x,y,z$ (given here by the limits $a$ and $b$), -!bt - \[ - \int_a^b dxdydz \psi^* \left(-\frac{1}{2}\nabla^2\right) \psi dxdydz = \psi^*\nabla\psi|_a^b+\int_a^b dxdydz\frac{1}{2}\nabla\psi^*\nabla\psi. -\] -!et -We will drop the limits $a$ and $b$ in the remaining discussion. -Inserting this expression into the expectation value for the energy and taking the variational minimum we obtain -!bt -\[ -\delta E = \delta \left\{\int dxdydz\left( \frac{1}{2}\nabla\psi^*\nabla\psi+V\psi^*\psi\right)\right\} = 0. -\] -!et - -!split -===== Variational Calculus and Lagrangian Multipliers ===== - -The constraint appears in integral form as -!bt -\[ - \int dxdydz \psi^* \psi=\mathrm{constant}, -\] -!et -and multiplying with a Lagrangian multiplier $\lambda$ and taking the variational minimum we obtain the final variational equation -!bt -\[ -\delta \left\{\int dxdydz\left( \frac{1}{2}\nabla\psi^*\nabla\psi+V\psi^*\psi-\lambda\psi^*\psi\right)\right\} = 0. -\] -!et - - -!split -===== Variational Calculus and Lagrangian Multipliers ===== - -We introduce the function $f$ -!bt -\[ - f = \frac{1}{2}\nabla\psi^*\nabla\psi+V\psi^*\psi-\lambda\psi^*\psi= -\frac{1}{2}(\psi^*_x\psi_x+\psi^*_y\psi_y+\psi^*_z\psi_z)+V\psi^*\psi-\lambda\psi^*\psi, -\] -!et -where we have skipped the dependence on $x,y,z$ and introduced the shorthand $\psi_x$, $\psi_y$ and $\psi_z$ for the various derivatives. - -For $\psi^*$ the Euler-Lagrange equations yield -!bt -\[ -\frac{\partial f}{\partial \psi^*}- \frac{\partial }{\partial x}\frac{\partial f}{\partial \psi^*_x}-\frac{\partial }{\partial y}\frac{\partial f}{\partial \psi^*_y}-\frac{\partial }{\partial z}\frac{\partial f}{\partial \psi^*_z}=0, -\] -!et -which results in -!bt -\[ - -\frac{1}{2}(\psi_{xx}+\psi_{yy}+\psi_{zz})+V\psi=\lambda \psi. -\] -!et - - -!split -===== Variational Calculus and Lagrangian Multipliers ===== - -We can then identify the Lagrangian multiplier as the energy of the system. The last equation is -nothing but the standard -Schroedinger equation and the variational approach discussed here provides -a powerful method for obtaining approximate solutions of the wave function. - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -Let us denote the ground state energy by $E_0$. According to the -variational principle we have -!bt -\[ - E_0 \le E[\Phi] = \int \Phi^*\hat{H}\Phi d\mathbf{\tau} -\] -!et -where $\Phi$ is a trial function which we assume to be normalized -!bt -\[ - \int \Phi^*\Phi d\mathbf{\tau} = 1, -\] -!et -where we have used the shorthand $d\mathbf{\tau}=dx_1dx_2\dots dx_N$. - - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -In the Hartree-Fock method the trial function is a Slater -determinant which can be rewritten as -!bt -\[ - \Psi(x_1,x_2,\dots,x_N,\alpha,\beta,\dots,\nu) = \frac{1}{\sqrt{N!}}\sum_{P} (-)^PP\psi_{\alpha}(x_1) - \psi_{\beta}(x_2)\dots\psi_{\nu}(x_N)=\sqrt{N!}\hat{A}\Phi_H, -\] -!et -where we have introduced the anti-symmetrization operator $\hat{A}$ defined by the -summation over all possible permutations *p* of two fermions. - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -It is defined as -!bt -\[ - \hat{A} = \frac{1}{N!}\sum_{p} (-)^p\hat{P}, -\] -!et -with the the Hartree-function given by the simple product of all possible single-particle function -!bt -\[ - \Phi_H(x_1,x_2,\dots,x_N,\alpha,\beta,\dots,\nu) = - \psi_{\alpha}(x_1) - \psi_{\beta}(x_2)\dots\psi_{\nu}(x_N). -\] -!et - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -Our functional is written as -!bt -\[ - E[\Phi] = \sum_{\mu=1}^N \int \psi_{\mu}^*(x_i)\hat{h}_0(x_i)\psi_{\mu}(x_i) dx_i - + \frac{1}{2}\sum_{\mu=1}^N\sum_{\nu=1}^N - \left[ \int \psi_{\mu}^*(x_i)\psi_{\nu}^*(x_j)\hat{v}(r_{ij})\psi_{\mu}(x_i)\psi_{\nu}(x_j)dx_idx_j- \int \psi_{\mu}^*(x_i)\psi_{\nu}^*(x_j) - \hat{v}(r_{ij})\psi_{\nu}(x_i)\psi_{\mu}(x_j)dx_idx_j\right] -\] -!et -The more compact version reads -!bt -\[ - E[\Phi] - = \sum_{\mu}^N \langle \mu | \hat{h}_0 | \mu\rangle+ \frac{1}{2}\sum_{\mu\nu}^N\left[\langle \mu\nu |\hat{v}|\mu\nu\rangle-\langle \nu\mu |\hat{v}|\mu\nu\rangle\right]. -\] -!et - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -Since the interaction is invariant under the interchange of two particles it means for example that we have -!bt -\[ -\langle \mu\nu|\hat{v}|\mu\nu\rangle = \langle \nu\mu|\hat{v}|\nu\mu\rangle, -\] -!et -or in the more general case -!bt -\[ -\langle \mu\nu|\hat{v}|\sigma\tau\rangle = \langle \nu\mu|\hat{v}|\tau\sigma\rangle. -\] -!et - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -The direct and exchange matrix elements can be brought together if we define the antisymmetrized matrix element -!bt -\[ -\langle \mu\nu|\hat{v}|\mu\nu\rangle_{AS}= \langle \mu\nu|\hat{v}|\mu\nu\rangle-\langle \mu\nu|\hat{v}|\nu\mu\rangle, -\] -!et -or for a general matrix element -!bt -\[ -\langle \mu\nu|\hat{v}|\sigma\tau\rangle_{AS}= \langle \mu\nu|\hat{v}|\sigma\tau\rangle-\langle \mu\nu|\hat{v}|\tau\sigma\rangle. -\] -!et - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -It has the symmetry property -!bt -\[ -\langle \mu\nu|\hat{v}|\sigma\tau\rangle_{AS}= -\langle \mu\nu|\hat{v}|\tau\sigma\rangle_{AS}=-\langle \nu\mu|\hat{v}|\sigma\tau\rangle_{AS}. -\] -!et -The antisymmetric matrix element is also hermitian, implying -!bt -\[ -\langle \mu\nu|\hat{v}|\sigma\tau\rangle_{AS}= \langle \sigma\tau|\hat{v}|\mu\nu\rangle_{AS}. -\] -!et - - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -With these notations we rewrite the Hartree-Fock functional as -!bt -\begin{equation} - \int \Phi^*\hat{H_I}\Phi d\mathbf{\tau} - = \frac{1}{2}\sum_{\mu=1}^N\sum_{\nu=1}^N \langle \mu\nu|\hat{v}|\mu\nu\rangle_{AS}. label{H2Expectation2} -\end{equation} -!et - -Adding the contribution from the one-body operator $\hat{H}_0$ to -(ref{H2Expectation2}) we obtain the energy functional -!bt -\begin{equation} - E[\Phi] - = \sum_{\mu=1}^N \langle \mu | h | \mu \rangle + - \frac{1}{2}\sum_{{\mu}=1}^N\sum_{{\nu}=1}^N \langle \mu\nu|\hat{v}|\mu\nu\rangle_{AS}. label{FunctionalEPhi} -\end{equation} -!et - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -In our coordinate space derivations below we will spell out the Hartree-Fock equations in terms of their integrals. - - - - -If we generalize the Euler-Lagrange equations to more variables -and introduce $N^2$ Lagrange multipliers which we denote by -$\epsilon_{\mu\nu}$, we can write the variational equation for the functional of $E$ -!bt -\[ - \delta E - \sum_{\mu\nu}^N \epsilon_{\mu\nu} \delta - \int \psi_{\mu}^* \psi_{\nu} = 0. -\] -!et -For the orthogonal wave functions $\psi_{i}$ this reduces to -!bt -\[ - \delta E - \sum_{\mu=1}^N \epsilon_{\mu} \delta - \int \psi_{\mu}^* \psi_{\mu} = 0. -\] -!et - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - - -Variation with respect to the single-particle wave functions $\psi_{\mu}$ yields then -!bt -\[ - \sum_{\mu=1}^N \int \delta\psi_{\mu}^*\hat{h_0}(x_i)\psi_{\mu} - dx_i - + \frac{1}{2}\sum_{{\mu}=1}^N\sum_{{\nu}=1}^N \left[ \int - \delta\psi_{\mu}^*\psi_{\nu}^*\hat{v}(r_{ij})\psi_{\mu}\psi_{\nu} dx_idx_j- \int - \delta\psi_{\mu}^*\psi_{\nu}^*\hat{v}(r_{ij})\psi_{\nu}\psi_{\mu} - dx_idx_j \right]+ -\] -!et -!bt -\[ -\sum_{\mu=1}^N \int \psi_{\mu}^*\hat{h_0}(x_i)\delta\psi_{\mu} - dx_i - + \frac{1}{2}\sum_{{\mu}=1}^N\sum_{{\nu}=1}^N \left[ \int - \psi_{\mu}^*\psi_{\nu}^*\hat{v}(r_{ij})\delta\psi_{\mu}\psi_{\nu} dx_idx_j- \int - \psi_{\mu}^*\psi_{\nu}^*\hat{v}(r_{ij})\psi_{\nu}\delta\psi_{\mu} - dx_idx_j \right]- \sum_{{\mu}=1}^N E_{\mu} \int \delta\psi_{\mu}^* - \psi_{\mu}dx_i - - \sum_{{\mu}=1}^N E_{\mu} \int \psi_{\mu}^* - \delta\psi_{\mu}dx_i = 0. -\] -!et - - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -Although the variations $\delta\psi$ and $\delta\psi^*$ are not -independent, they may in fact be treated as such, so that the -terms dependent on either $\delta\psi$ and $\delta\psi^*$ individually -may be set equal to zero. To see this, simply -replace the arbitrary variation $\delta\psi$ by $i\delta\psi$, so that -$\delta\psi^*$ is replaced by $-i\delta\psi^*$, and combine the two -equations. We thus arrive at the Hartree-Fock equations -!bt -\begin{equation} -\left[ -\frac{1}{2}\nabla_i^2+ \sum_{\nu=1}^N\int \psi_{\nu}^*(x_j)\hat{v}(r_{ij})\psi_{\nu}(x_j)dx_j \right]\psi_{\mu}(x_i) - \left[ \sum_{{\nu}=1}^N \int\psi_{\nu}^*(x_j)\hat{v}(r_{ij})\psi_{\mu}(x_j) dx_j\right] \psi_{\nu}(x_i) = \epsilon_{\mu} \psi_{\mu}(x_i). label{eq:hartreefockcoordinatespace} -\end{equation} -!et - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -Notice that the integration $\int dx_j$ implies an -integration over the spatial coordinates $\mathbf{r_j}$ and a summation -over the spin-coordinate of fermion $j$. We note that the factor of $1/2$ in front of the sum involving the two-body interaction, has been removed. This is due to the fact that we need to vary both $\delta\psi_{\mu}^*$ and -$\delta\psi_{\nu}^*$. Using the symmetry properties of the two-body interaction and interchanging $\mu$ and $\nu$ -as summation indices, we obtain two identical terms. - - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -The two first terms in the last equation are the one-body kinetic -energy and the electron-nucleus potential. The third or *direct* term -is the averaged electronic repulsion of the other electrons. As -written, the term includes the *self-interaction* of electrons when -$\mu=\nu$. The self-interaction is cancelled in the fourth term, or -the *exchange* term. The exchange term results from our inclusion of -the Pauli principle and the assumed determinantal form of the -wave-function. Equation (ref{eq:hartreefockcoordinatespace}), in -addition to the kinetic energy and the attraction from the atomic -nucleus that confines the motion of a single electron, represents now -the motion of a single-particle modified by the two-body -interaction. The additional contribution to the Schroedinger equation -due to the two-body interaction, represents a mean field set up by all -the other bystanding electrons, the latter given by the sum over all -single-particle states occupied by $N$ electrons. - - -!split -===== Derivation of Hartree-Fock equations in coordinate space ===== - -The Hartree-Fock equation is an example of an integro-differential -equation. These equations involve repeated calculations of integrals, -in addition to the solution of a set of coupled differential -equations. The Hartree-Fock equations can also be rewritten in terms -of an eigenvalue problem. The solution of an eigenvalue problem -represents often a more practical algorithm and the solution of -coupled integro-differential equations. This alternative derivation -of the Hartree-Fock equations is given below. - - - -!split -===== Analysis of Hartree-Fock equations in coordinate space ===== - - A theoretically convenient form of the -Hartree-Fock equation is to regard the direct and exchange operator -defined through -!bt -\begin{equation*} - V_{\mu}^{d}(x_i) = \int \psi_{\mu}^*(x_j) - \hat{v}(r_{ij})\psi_{\mu}(x_j) dx_j -\end{equation*} -!et -and -!bt -\begin{equation*} - V_{\mu}^{ex}(x_i) g(x_i) - = \left(\int \psi_{\mu}^*(x_j) - \hat{v}(r_{ij})g(x_j) dx_j - \right)\psi_{\mu}(x_i), -\end{equation*} -!et -respectively. - - - -!split -===== Analysis of Hartree-Fock equations in coordinate space ===== - -The function $g(x_i)$ is an arbitrary function, -and by the substitution $g(x_i) = \psi_{\nu}(x_i)$ -we get -!bt -\begin{equation*} - V_{\mu}^{ex}(x_i) \psi_{\nu}(x_i) - = \left(\int \psi_{\mu}^*(x_j) - \hat{v}(r_{ij})\psi_{\nu}(x_j) - dx_j\right)\psi_{\mu}(x_i). -\end{equation*} -!et - - -!split -===== Analysis of Hartree-Fock equations in coordinate space ===== - -We may then rewrite the Hartree-Fock equations as -!bt -\[ - \hat{h}^{HF}(x_i) \psi_{\nu}(x_i) = \epsilon_{\nu}\psi_{\nu}(x_i), -\] -!et -with -!bt -\[ - \hat{h}^{HF}(x_i)= \hat{h}_0(x_i) + \sum_{\mu=1}^NV_{\mu}^{d}(x_i) - - \sum_{\mu=1}^NV_{\mu}^{ex}(x_i), -\] -!et -and where $\hat{h}_0(i)$ is the one-body part. The latter is normally chosen as a part which yields solutions in closed form. The harmonic oscilltor is a classical problem thereof. -We normally rewrite the last equation as -!bt -\[ - \hat{h}^{HF}(x_i)= \hat{h}_0(x_i) + \hat{u}^{HF}(x_i). -\] -!et - - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - -Another possibility is to expand the single-particle functions in a -known basis and vary the coefficients, that is, the new -single-particle wave function is written as a linear expansion in -terms of a fixed chosen orthogonal basis (for example the well-known -harmonic oscillator functions or the hydrogen-like functions etc). We -define our new Hartree-Fock single-particle basis by performing a -unitary transformation on our previous basis (labelled with greek -indices) as - - -!bt -\begin{equation} -\psi_p^{HF} = \sum_{\lambda} C_{p\lambda}\phi_{\lambda}. label{eq:newbasis} -\end{equation} -!et -In this case we vary the coefficients $C_{p\lambda}$. If the basis has infinitely many solutions, we need -to truncate the above sum. We assume that the basis $\phi_{\lambda}$ is orthogonal. - - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - -It is normal to choose a single-particle basis defined as the eigenfunctions -of parts of the full Hamiltonian. The typical situation consists of the solutions of the one-body part of the Hamiltonian, that is we have -!bt -\[ -\hat{h}_0\phi_{\lambda}=\epsilon_{\lambda}\phi_{\lambda}. -\] -!et -The single-particle wave functions $\phi_{\lambda}(\mathbf{r})$, defined by the quantum numbers $\lambda$ and $\mathbf{r}$ -are defined as the overlap -!bt -\[ - \phi_{\lambda}(\mathbf{r}) = \langle \mathbf{r} | \lambda \rangle . -\] -!et - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - -In deriving the Hartree-Fock equations, we will expand the -single-particle functions in a known basis and vary the coefficients, -that is, the new single-particle wave function is written as a linear -expansion in terms of a fixed chosen orthogonal basis (for example the -well-known harmonic oscillator functions or the hydrogen-like -functions etc). - -We stated that a unitary transformation keeps the orthogonality. To see this consider first a basis of vectors $\mathbf{v}_i$, -!bt -\[ -\mathbf{v}_i = \begin{bmatrix} v_{i1} \\ \dots \\ \dots \\v_{in} \end{bmatrix} -\] -!et - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - -We assume that the basis is orthogonal, that is -!bt -\[ -\mathbf{v}_j^T\mathbf{v}_i = \delta_{ij}. -\] -!et -An orthogonal or unitary transformation -!bt -\[ -\mathbf{w}_i=\mathbf{U}\mathbf{v}_i, -\] -!et -preserves the dot product and orthogonality since -!bt -\[ -\mathbf{w}_j^T\mathbf{w}_i=(\mathbf{U}\mathbf{v}_j)^T\mathbf{U}\mathbf{v}_i=\mathbf{v}_j^T\mathbf{U}^T\mathbf{U}\mathbf{v}_i= \mathbf{v}_j^T\mathbf{v}_i = \delta_{ij}. -\] -!et - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - -This means that if the coefficients $C_{p\lambda}$ belong to a unitary or orthogonal trasformation (using the Dirac bra-ket notation) -!bt -\[ -\vert p\rangle = \sum_{\lambda} C_{p\lambda}\vert\lambda\rangle, -\] -!et -orthogonality is preserved, that is $\langle \alpha \vert \beta\rangle = \delta_{\alpha\beta}$ -and $\langle p \vert q\rangle = \delta_{pq}$. - -This propertry is extremely useful when we build up a basis of many-body Stater determinant based states. - -_Note also that although a basis $\vert \alpha\rangle$ contains an infinity of states, for practical calculations we have always to make some truncations._ - - - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - -Before we develop the Hartree-Fock equations, there is another very -useful property of determinants that we will use both in connection -with Hartree-Fock calculations. This applies also to our previous -discussion on full configuration interaction theory. - -Consider the following determinant -!bt -\[ -\left| \begin{array}{cc} \alpha_1b_{11}+\alpha_2sb_{12}& a_{12}\\ - \alpha_1b_{21}+\alpha_2b_{22}&a_{22}\end{array} \right|=\alpha_1\left|\begin{array}{cc} b_{11}& a_{12}\\ - b_{21}&a_{22}\end{array} \right|+\alpha_2\left| \begin{array}{cc} b_{12}& a_{12}\\b_{22}&a_{22}\end{array} \right| -\] -!et - - - - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - -We can generalize this to an $n\times n$ matrix and have -!bt -\[ -\left| \begin{array}{cccccc} a_{11}& a_{12} & \dots & \sum_{k=1}^n c_k b_{1k} &\dots & a_{1n}\\ -a_{21}& a_{22} & \dots & \sum_{k=1}^n c_k b_{2k} &\dots & a_{2n}\\ -\dots & \dots & \dots & \dots & \dots & \dots \\ -\dots & \dots & \dots & \dots & \dots & \dots \\ -a_{n1}& a_{n2} & \dots & \sum_{k=1}^n c_k b_{nk} &\dots & a_{nn}\end{array} \right|= -\sum_{k=1}^n c_k\left| \begin{array}{cccccc} a_{11}& a_{12} & \dots & b_{1k} &\dots & a_{1n}\\ -a_{21}& a_{22} & \dots & b_{2k} &\dots & a_{2n}\\ -\dots & \dots & \dots & \dots & \dots & \dots\\ -\dots & \dots & \dots & \dots & \dots & \dots\\ -a_{n1}& a_{n2} & \dots & b_{nk} &\dots & a_{nn}\end{array} \right| . -\] -!et -This is a property we will use in our Hartree-Fock discussions. - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - -We can generalize the previous results, now -with all elements $a_{ij}$ being given as functions of -linear combinations of various coefficients $c$ and elements $b_{ij}$, -!bt -\[ -\left| \begin{array}{cccccc} \sum_{k=1}^n b_{1k}c_{k1}& \sum_{k=1}^n b_{1k}c_{k2} & \dots & \sum_{k=1}^n b_{1k}c_{kj} &\dots & \sum_{k=1}^n b_{1k}c_{kn}\\ -\sum_{k=1}^n b_{2k}c_{k1}& \sum_{k=1}^n b_{2k}c_{k2} & \dots & \sum_{k=1}^n b_{2k}c_{kj} &\dots & \sum_{k=1}^n b_{2k}c_{kn}\\ -\dots & \dots & \dots & \dots & \dots & \dots \\ -\dots & \dots & \dots & \dots & \dots &\dots \\ -\sum_{k=1}^n b_{nk}c_{k1}& \sum_{k=1}^n b_{nk}c_{k2} & \dots & \sum_{k=1}^n b_{nk}c_{kj} &\dots & \sum_{k=1}^n b_{nk}c_{kn}\end{array} \right|=det(\mathbf{C})det(\mathbf{B}), -\] -!et -where $det(\mathbf{C})$ and $det(\mathbf{B})$ are the determinants of $n\times n$ matrices -with elements $c_{ij}$ and $b_{ij}$ respectively. -This is a property we will use in our Hartree-Fock discussions. Convince yourself about the correctness of the above expression by setting $n=2$. - - - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - -With our definition of the new basis in terms of an orthogonal basis we have -!bt -\[ -\psi_p(x) = \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x). -\] -!et -If the coefficients $C_{p\lambda}$ belong to an orthogonal or unitary matrix, the new basis -is also orthogonal. -Our Slater determinant in the new basis $\psi_p(x)$ is written as -!bt -\[ -\frac{1}{\sqrt{N!}} -\left| \begin{array}{ccccc} \psi_{p}(x_1)& \psi_{p}(x_2)& \dots & \dots & \psi_{p}(x_N)\\ - \psi_{q}(x_1)&\psi_{q}(x_2)& \dots & \dots & \psi_{q}(x_N)\\ - \dots & \dots & \dots & \dots & \dots \\ - \dots & \dots & \dots & \dots & \dots \\ - \psi_{t}(x_1)&\psi_{t}(x_2)& \dots & \dots & \psi_{t}(x_N)\end{array} \right|=\frac{1}{\sqrt{N!}} -\left| \begin{array}{ccccc} \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_1)& \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_2)& \dots & \dots & \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_N)\\ - \sum_{\lambda} C_{q\lambda}\phi_{\lambda}(x_1)&\sum_{\lambda} C_{q\lambda}\phi_{\lambda}(x_2)& \dots & \dots & \sum_{\lambda} C_{q\lambda}\phi_{\lambda}(x_N)\\ - \dots & \dots & \dots & \dots & \dots \\ - \dots & \dots & \dots & \dots & \dots \\ - \sum_{\lambda} C_{t\lambda}\phi_{\lambda}(x_1)&\sum_{\lambda} C_{t\lambda}\phi_{\lambda}(x_2)& \dots & \dots & \sum_{\lambda} C_{t\lambda}\phi_{\lambda}(x_N)\end{array} \right|, -\] -!et -which is nothing but $det(\mathbf{C})det(\Phi)$, with $det(\Phi)$ being the determinant given by the basis functions $\phi_{\lambda}(x)$. - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - -In our discussions hereafter we will use our definitions of single-particle states above and below the Fermi ($F$) level given by the labels -$ijkl\dots \le F$ for so-called single-hole states and $abcd\dots > F$ for so-called particle states. -For general single-particle states we employ the labels $pqrs\dots$. - - - - -In Eq.~(ref{FunctionalEPhi}), restated here -!bt -\[ - E[\Phi] - = \sum_{\mu=1}^N \langle \mu | h | \mu \rangle + - \frac{1}{2}\sum_{{\mu}=1}^N\sum_{{\nu}=1}^N \langle \mu\nu|\hat{v}|\mu\nu\rangle_{AS}, -\] -!et -we found the expression for the energy functional in terms of the basis function $\phi_{\lambda}(\mathbf{r})$. We then varied the above energy functional with respect to the basis functions $|\mu \rangle$. - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - -Now we are interested in defining a new basis defined in terms of -a chosen basis as defined in Eq.~(ref{eq:newbasis}). We can then rewrite the energy functional as -!bt -\begin{equation} - E[\Phi^{HF}] - = \sum_{i=1}^N \langle i | h | i \rangle + - \frac{1}{2}\sum_{ij=1}^N\langle ij|\hat{v}|ij\rangle_{AS}, label{FunctionalEPhi2} -\end{equation} -!et -where $\Phi^{HF}$ is the new Slater determinant defined by the new basis of Eq.~(ref{eq:newbasis}). - - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - -Using Eq.~(ref{eq:newbasis}) we can rewrite Eq.~(ref{FunctionalEPhi2}) as -!bt -\begin{equation} - E[\Psi] - = \sum_{i=1}^N \sum_{\alpha\beta} C^*_{i\alpha}C_{i\beta}\langle \alpha | h | \beta \rangle + - \frac{1}{2}\sum_{ij=1}^N\sum_{{\alpha\beta\gamma\delta}} C^*_{i\alpha}C^*_{j\beta}C_{i\gamma}C_{j\delta}\langle \alpha\beta|\hat{v}|\gamma\delta\rangle_{AS}. label{FunctionalEPhi3} -\end{equation} -!et - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - - -We wish now to minimize the above functional. We introduce again a set of Lagrange multipliers, noting that -since $\langle i | j \rangle = \delta_{i,j}$ and $\langle \alpha | \beta \rangle = \delta_{\alpha,\beta}$, -the coefficients $C_{i\gamma}$ obey the relation -!bt -\[ - \langle i | j \rangle=\delta_{i,j}=\sum_{\alpha\beta} C^*_{i\alpha}C_{i\beta}\langle \alpha | \beta \rangle= -\sum_{\alpha} C^*_{i\alpha}C_{i\alpha}, -\] -!et -which allows us to define a functional to be minimized that reads -!bt -\begin{equation} - F[\Phi^{HF}]=E[\Phi^{HF}] - \sum_{i=1}^N\epsilon_i\sum_{\alpha} C^*_{i\alpha}C_{i\alpha}. -\end{equation} -!et - - - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - - -Minimizing with respect to $C^*_{i\alpha}$, remembering that the equations for $C^*_{i\alpha}$ and $C_{i\alpha}$ -can be written as two independent equations, we obtain -!bt -\[ -\frac{d}{dC^*_{i\alpha}}\left[ E[\Phi^{HF}] - \sum_{j}\epsilon_j\sum_{\alpha} C^*_{j\alpha}C_{j\alpha}\right]=0, -\] -!et -which yields for every single-particle state $i$ and index $\alpha$ (recalling that the coefficients $C_{i\alpha}$ are matrix elements of a unitary (or orthogonal for a real symmetric matrix) matrix) -the following Hartree-Fock equations -!bt -\[ -\sum_{\beta} C_{i\beta}\langle \alpha | h | \beta \rangle+ -\sum_{j=1}^N\sum_{\beta\gamma\delta} C^*_{j\beta}C_{j\delta}C_{i\gamma}\langle \alpha\beta|\hat{v}|\gamma\delta\rangle_{AS}=\epsilon_i^{HF}C_{i\alpha}. -\] -!et - - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - -We can rewrite this equation as (changing dummy variables) -!bt -\[ -\sum_{\beta} \left\{\langle \alpha | h | \beta \rangle+ -\sum_{j}^N\sum_{\gamma\delta} C^*_{j\gamma}C_{j\delta}\langle \alpha\gamma|\hat{v}|\beta\delta\rangle_{AS}\right\}C_{i\beta}=\epsilon_i^{HF}C_{i\alpha}. -\] -!et -Note that the sums over greek indices run over the number of basis set functions (in principle an infinite number). - - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - -Defining -!bt -\[ -h_{\alpha\beta}^{HF}=\langle \alpha | h | \beta \rangle+ -\sum_{j=1}^N\sum_{\gamma\delta} C^*_{j\gamma}C_{j\delta}\langle \alpha\gamma|\hat{v}|\beta\delta\rangle_{AS}, -\] -!et -we can rewrite the new equations as -!bt -\begin{equation} -\sum_{\beta}h_{\alpha\beta}^{HF}C_{i\beta}=\epsilon_i^{HF}C_{i\alpha}. label{eq:newhf} -\end{equation} -!et -The latter is nothing but a standard eigenvalue problem. Compared with Eq.~(ref{eq:hartreefockcoordinatespace}), -we see that we do not need to compute any integrals in an iterative procedure for solving the equations. -It suffices to tabulate the matrix elements $\langle \alpha | h | \beta \rangle$ and $\langle \alpha\gamma|\hat{v}|\beta\delta\rangle_{AS}$ once and for all. Successive iterations require thus only a look-up in tables over one-body and two-body matrix elements. These details will be discussed below when we solve the Hartree-Fock equations numerical. - - -!split -===== Hartree-Fock algorithm ===== - -Our Hartree-Fock matrix is thus -!bt -\[ -\hat{h}_{\alpha\beta}^{HF}=\langle \alpha | \hat{h}_0 | \beta \rangle+ -\sum_{j=1}^N\sum_{\gamma\delta} C^*_{j\gamma}C_{j\delta}\langle \alpha\gamma|\hat{v}|\beta\delta\rangle_{AS}. -\] -!et -The Hartree-Fock equations are solved in an iterative waym starting with a guess for the coefficients $C_{j\gamma}=\delta_{j,\gamma}$ and solving the equations by diagonalization till the new single-particle energies -$\epsilon_i^{\mathrm{HF}}$ do not change anymore by a prefixed quantity. - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - -Normally we assume that the single-particle basis $|\beta\rangle$ forms an eigenbasis for the operator -$\hat{h}_0$, meaning that the Hartree-Fock matrix becomes -!bt -\[ -\hat{h}_{\alpha\beta}^{HF}=\epsilon_{\alpha}\delta_{\alpha,\beta}+ -\sum_{j=1}^N\sum_{\gamma\delta} C^*_{j\gamma}C_{j\delta}\langle \alpha\gamma|\hat{v}|\beta\delta\rangle_{AS}. -\] -!et -The Hartree-Fock eigenvalue problem -!bt -\[ -\sum_{\beta}\hat{h}_{\alpha\beta}^{HF}C_{i\beta}=\epsilon_i^{\mathrm{HF}}C_{i\alpha}, -\] -!et -can be written out in a more compact form as -!bt -\[ -\hat{h}^{HF}\hat{C}=\epsilon^{\mathrm{HF}}\hat{C}. -\] -!et - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - - -The Hartree-Fock equations are, in their simplest form, solved in an -iterative way, starting with a guess for the coefficients -$C_{i\alpha}$. We label the coefficients as $C_{i\alpha}^{(n)}$, where -the subscript $n$ stands for iteration $n$. To set up the algorithm -we can proceed as follows: - - * We start with a guess $C_{i\alpha}^{(0)}=\delta_{i,\alpha}$. Alternatively, we could have used random starting values as long as the vectors are normalized. Another possibility is to give states below the Fermi level a larger weight. - * The Hartree-Fock matrix simplifies then to (assuming that the coefficients $C_{i\alpha} $ are real) -!bt -\[ -\hat{h}_{\alpha\beta}^{HF}=\epsilon_{\alpha}\delta_{\alpha,\beta}+ -\sum_{j = 1}^N\sum_{\gamma\delta} C_{j\gamma}^{(0)}C_{j\delta}^{(0)}\langle \alpha\gamma|\hat{v}|\beta\delta\rangle_{AS}. -\] -!et - - - -!split -===== Hartree-Fock by varying the coefficients of a wave function expansion ===== - -Solving the Hartree-Fock eigenvalue problem yields then new eigenvectors $C_{i\alpha}^{(1)}$ and eigenvalues -$\epsilon_i^{HF(1)}$. - * With the new eigenvalues we can set up a new Hartree-Fock potential -!bt -\[ -\sum_{j = 1}^N\sum_{\gamma\delta} C_{j\gamma}^{(1)}C_{j\delta}^{(1)}\langle \alpha\gamma|\hat{v}|\beta\delta\rangle_{AS}. -\] -!et -The diagonalization with the new Hartree-Fock potential yields new eigenvectors and eigenvalues. -This process is continued till for example -!bt -\[ -\frac{\sum_{p} |\epsilon_i^{(n)}-\epsilon_i^{(n-1)}|}{m} \le \lambda, -\] -!et -where $\lambda$ is a user prefixed quantity ($\lambda \sim 10^{-8}$ or smaller) and $p$ runs over all calculated single-particle -energies and $m$ is the number of single-particle states. -