-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbrain.py
89 lines (70 loc) · 2.7 KB
/
brain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import node
import connection
import random
class Brain:
def __init__(self, inputs, clone=False):
self.connections = []
self.nodes = []
self.inputs = inputs
self.net = []
self.layers = 2
if not clone:
# Create input nodes
for i in range(0, self.inputs):
self.nodes.append(node.Node(i))
self.nodes[i].layer = 0
# Create bias node
self.nodes.append(node.Node(3))
self.nodes[3].layer = 0
# Create output node
self.nodes.append(node.Node(4))
self.nodes[4].layer = 1
# Create connections
for i in range(0, 4):
self.connections.append(connection.Connection(self.nodes[i],
self.nodes[4],
random.uniform(-1, 1)))
def connect_nodes(self):
for i in range(0, len(self.nodes)):
self.nodes[i].connections = []
for i in range(0, len(self.connections)):
self.connections[i].from_node.connections.append(self.connections[i])
def generate_net(self):
self.connect_nodes()
self.net = []
for j in range(0, self.layers):
for i in range(0, len(self.nodes)):
if self.nodes[i].layer == j:
self.net.append(self.nodes[i])
def feed_forward(self, vision):
for i in range(0, self.inputs):
self.nodes[i].output_value = vision[i]
self.nodes[3].output_value = 1
for i in range(0, len(self.net)):
self.net[i].activate()
# Get output value from output node
output_value = self.nodes[4].output_value
# Reset node input values - only node 6 Missing Natural Selection in this case
for i in range(0, len(self.nodes)):
self.nodes[i].input_value = 0
return output_value
def clone(self):
clone = Brain(self.inputs, True)
# Clone all the nodes
for n in self.nodes:
clone.nodes.append(n.clone())
# Clone all connections
for c in self.connections:
clone.connections.append(c.clone(clone.getNode(c.from_node.id), clone.getNode(c.to_node.id)))
clone.layers = self.layers
clone.connect_nodes()
return clone
def getNode(self, id):
for n in self.nodes:
if n.id == id:
return n
# 80 % chance that a connection undergoes mutation
def mutate(self):
if random.uniform(0, 1) < 0.8:
for i in range(0, len(self.connections)):
self.connections[i].mutate_weight()