-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
52 lines (44 loc) · 1.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import logging
import random
import torch.nn as nn
from model import model_cifar
from partition_data import *
import torchvision.models as models
from sklearn.metrics import balanced_accuracy_score
from torch.utils.data import random_split
def init_nets(args,n_parties):
nets = {net_i: None for net_i in range(n_parties)}
if args.dataset in ["cifar10","mnist","fmnist","SVHN"]:
n_classes = 10
elif args.dataset in ["cifar100"]:
n_classes = 100
for net_i in range(n_parties):
net = model_cifar(args, n_classes)
nets[net_i] = net
return nets
def init_dataloader_per(args, net_dataidx_map_train=None,net_dataidx_map_test=None):
print("starting init dataloader")
train_dl_local_set = []
train_ds_local_set = []
test_dl_local_set = []
test_ds_local_set = []
for i in range(args.n_parties):
if net_dataidx_map_train==None:
dataidxs_train=None
dataidxs_test=None
else:
dataidxs_train = net_dataidx_map_train[i]
dataidxs_test=net_dataidx_map_test[i]
train_dl_local, test_dl_local, train_ds_local, test_ds_local,test_global = get_dataloader_per(args,dataidxs_train=dataidxs_train,dataidxs_test=dataidxs_test)
train_dl_local_set.append(train_dl_local)
train_ds_local_set.append(train_ds_local)
test_dl_local_set.append(test_dl_local)
test_ds_local_set.append(test_ds_local)
print("finishing init dataloader")
return train_dl_local_set, test_dl_local_set,train_ds_local_set,test_ds_local_set,test_global
def mkdirs(dirpath):
try:
os.makedirs(dirpath)
except Exception as _:
pass