-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
170 lines (139 loc) · 8.46 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torch.nn as nn
# import torch.nn.functional as F
import torchvision.models as models
class client_model(nn.Module):
def __init__(self, name, args=True):
super(client_model, self).__init__()
self.name = name
if self.name == 'ResNet18P':
resnet18 = models.resnet18(num_classes=2048, pretrained=False)
param_dicts = torch.load('/mnt/workspace/colla_group/ckpt/resnet18-5c106cde.pth')
for item in list(param_dicts):
if "fc" in item:
del param_dicts[item]
resnet18.load_state_dict(param_dicts, strict=False)
resnet18.bn1 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer2[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[0].downsample[1] = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer3[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[0].downsample[1] = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer4[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[0].downsample[1] = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 512)
self.model=resnet18
#if args.dataset=="officehome":
n_class=65
self.fc=nn.Linear(2048,n_class)
if self.name == 'Linear':
[self.n_dim, self.n_out] = args
self.fc = nn.Linear(self.n_dim, self.n_out)
if self.name == 'mnist_2NN':
self.n_cls = 10
self.fc1 = nn.Linear(1 * 28 * 28, 200)
self.fc2 = nn.Linear(200, 200)
self.fc3 = nn.Linear(200, self.n_cls)
if self.name == 'emnist_NN':
self.n_cls = 10
self.fc1 = nn.Linear(1 * 28 * 28, 100)
self.fc2 = nn.Linear(100, 100)
self.fc3 = nn.Linear(100, self.n_cls)
if self.name == 'LeNet':
self.n_cls = 10
self.conv1 = nn.Conv2d(in_channels=3, out_channels=64 , kernel_size=5)
self.conv2 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=5)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64*5*5, 384)
self.fc2 = nn.Linear(384, 192)
self.fc3 = nn.Linear(192, self.n_cls)
if self.name == 'ResNet18':
resnet18 = models.resnet18()
resnet18.fc = nn.Linear(512, 10)
# Change BN to GN
resnet18.bn1 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer2[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[0].downsample[1] = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer3[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[0].downsample[1] = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer4[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[0].downsample[1] = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 512)
assert len(dict(resnet18.named_parameters()).keys()) == len(resnet18.state_dict().keys()), 'More BN layers are there...'
self.model = resnet18
if self.name == 'ResNet18_100':
resnet18 = models.resnet18()
resnet18.fc = nn.Linear(512, 100)
# Change BN to GN
resnet18.bn1 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer1[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 64)
resnet18.layer2[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[0].downsample[1] = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer2[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 128)
resnet18.layer3[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[0].downsample[1] = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer3[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 256)
resnet18.layer4[0].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[0].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[0].downsample[1] = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[1].bn1 = nn.GroupNorm(num_groups = 2, num_channels = 512)
resnet18.layer4[1].bn2 = nn.GroupNorm(num_groups = 2, num_channels = 512)
assert len(dict(resnet18.named_parameters()).keys()) == len(resnet18.state_dict().keys()), 'More BN layers are there...'
self.model = resnet18
def forward(self, x):
if self.name == 'Linear':
x = self.fc(x)
if self.name == 'mnist_2NN':
x = x.view(-1, 1 * 28 * 28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
if self.name == 'emnist_NN':
x = x.view(-1, 1 * 28 * 28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
if self.name == 'LeNet':
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64*5*5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
if self.name in ['ResNet18',"ResNet18_100"]:
x = self.model(x)
#print(x)
if self.name in ["ResNet18P"]:
x=self.model(x)
x=self.fc(x)
return x