-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
406 lines (363 loc) · 17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import argparse
import builtins
import os
import random
import shutil
import time
import warnings
from sklearn.utils import shuffle
import torch
import torch.nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
from datetime import datetime
import torch.utils.data.distributed
import tensorboard_logger as tb_logger
import numpy as np
from models.resnet import *
from utils.utils_algo import *
from utils.utils_loss import CORR_loss ,CORR_loss_RECORDS, CORR_loss_RECORDS_mixup
from utils.cifar100 import load_cifar100_imbalance
from utils.cifar10 import load_cifar10_imbalance
from utils.voc import load_voc
torch.set_printoptions(precision=2, sci_mode=False)
parser = argparse.ArgumentParser(
description='PyTorch implementation of ICLR 2023 paper "Long-Tailed Partial Label Learning via Dynamic Rebalancing"')
parser.add_argument('--dataset', default='cifar10', type=str,
choices=['cifar10_im','cifar100_im'],
help='dataset name')
parser.add_argument('--exp_dir', default='experiment/CORR', type=str,
help='experiment directory for saving checkpoints and logs')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', choices=['resnet18'],
help='network architecture')
parser.add_argument('-j', '--workers', default=32, type=int,
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=800, type=int,
help='number of total epochs to run')
parser.add_argument('--start_epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch_size', default=256, type=int,
help='mini-batch size')
parser.add_argument('--lr', '--learning_rate', default=0.02, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('-lr_decay_epochs', type=str, default='700,800,900',
help='where to decay lr, can be a list')
parser.add_argument('-lr_decay_rate', type=float, default=0.1,
help='decay rate for learning rate')
parser.add_argument('--cosine', action='store_true', default=False,
help='use cosine lr schedule')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--wd', '--weight_decay', default=1e-5, type=float,
metavar='W', help='weight decay (default: 1e-5)',
dest='weight_decay')
parser.add_argument('-p', '--print_freq', default=100, type=int,
help='print frequency (default: 100)')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--world_size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist_url', default='tcp://localhost:10002', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist_backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing_distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--num_class', default=10, type=int,
help='number of class')
parser.add_argument('--upd_start', default=1, type=int,
help='Start Updating w')
parser.add_argument('--partial_rate', default=0.1, type=float,
help='ambiguity level (q)')
parser.add_argument('--hierarchical', action='store_true',
help='for CIFAR-100 fine-grained training')
parser.add_argument('--imb_factor', default=0.01, type=float,
help='dataset imbalance rate')
parser.add_argument('--records', action='store_true',
help='use RECORDS')
parser.add_argument('--m', default=0.9, type=float,
help='momentum for RECORDS')
parser.add_argument('--mixup', action='store_true',
help='use mixup')
parser.add_argument('--alpha', default=1.0, type=float,
help='alpha for mixup')
def main():
args = parser.parse_args()
iterations = args.lr_decay_epochs.split(',')
args.lr_decay_epochs = list([])
for it in iterations:
args.lr_decay_epochs.append(int(it))
print(args)
if args.seed is not None:
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
model_path = 'RECORDS_' if args.records else ''
if args.mixup:
model_path += 'mixup_alpha_{alpha}_'.format(alpha=args.alpha)
model_path = model_path+'ds_{ds}_pr_{pr}_lr_{lr}_ep_{ep}_us_{us}_arch_{arch}_heir_{heir}_if{imf}_sd_{seed}'.format(
ds=args.dataset,
pr=args.partial_rate,
lr=args.lr,
ep=args.epochs,
us=args.upd_start,
arch=args.arch,
imf=args.imb_factor,
seed=args.seed,
heir=args.hierarchical)
args.exp_dir = os.path.join(args.exp_dir, model_path)
args.exp_dir = os.path.join(
args.exp_dir, datetime.now().strftime("%Y%m%d_%H%M%S"))
if not os.path.exists(args.exp_dir):
os.makedirs(args.exp_dir)
ngpus_per_node = torch.cuda.device_count()
# print(ngpus_per_node)
if args.multiprocessing_distributed:
args.world_size = ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node,
args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
cudnn.benchmark = True
args.gpu = gpu
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
cudnn.deterministic = True
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# suppress printing if not master
if args.multiprocessing_distributed and args.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
print("=> creating model '{}'".format(args.arch))
model = ResNet_s(
name='resnet18', num_class=args.num_class, pretrained=False)
if args.distributed:
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int(
(args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu])
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
raise NotImplementedError("Only DistributedDataParallel is supported.")
else:
raise NotImplementedError("Only DistributedDataParallel is supported.")
# set optimizer
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cls_num_list_true_label = None
if args.hierarchical:
class_shuffle = True
else:
class_shuffle = False
if args.dataset == 'cifar100_im':
train_loader, train_givenY, train_sampler, test_loader, cls_num_list_true_label = load_cifar100_imbalance(
partial_rate=args.partial_rate, batch_size=args.batch_size, hierarchical=args.hierarchical, imb_factor=args.imb_factor, con=True,shuffle=class_shuffle)
elif args.dataset == 'cifar10_im':
train_loader, train_givenY, train_sampler, test_loader, cls_num_list_true_label = load_cifar10_imbalance(
partial_rate=args.partial_rate, batch_size=args.batch_size, hierarchical=args.hierarchical, imb_factor=args.imb_factor, con=True,shuffle=class_shuffle)
elif args.dataset == 'voc':
train_loader, train_givenY, train_sampler, test_loader, cls_num_list_true_label = load_voc(batch_size=args.batch_size,con=True)
else:
raise NotImplementedError(
"You have chosen an unsupported dataset. Please check and try again.")
print('Calculating uniform targets...')
tempY = train_givenY.sum(dim=1).unsqueeze(
1).repeat(1, train_givenY.shape[1])
confidence = train_givenY.float()/tempY
confidence = confidence.cuda()
if args.records:
if args.mixup:
loss_fn = CORR_loss_RECORDS_mixup(confidence,m=args.m,mixup=args.alpha)
else:
loss_fn = CORR_loss_RECORDS(confidence,m=args.m)
else:
loss_fn = CORR_loss(confidence)
if args.gpu == 0:
logger = tb_logger.Logger(logdir=os.path.join(
args.exp_dir, 'tensorboard'), flush_secs=2)
else:
logger = None
print('\nStart Training\n')
best_acc = 0
mmc = 0 # mean max confidence
for epoch in range(args.start_epoch, args.epochs):
is_best = False
start_upd = epoch >= args.upd_start
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(args, optimizer, epoch)
train(train_loader, model, loss_fn, optimizer,
epoch, args, logger, start_upd)
feat_mean = loss_fn.feat_mean if args.records else None
acc_test = test(
model, test_loader, args, epoch, logger, feat_mean)
mmc = loss_fn.confidence.max(dim=1)[0].mean()
if acc_test > best_acc:
best_acc = acc_test
is_best = True
with open(os.path.join(args.exp_dir, 'result.log'), 'a+') as f:
f.write('Epoch {}: Acc {}, Best Acc {}. (lr {}, MMC {})\n'.format(
epoch, acc_test, best_acc, optimizer.param_groups[0]['lr'], mmc))
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, is_best=is_best, filename='{}/checkpoint.pth.tar'.format(args.exp_dir),
best_file_name='{}/checkpoint_best.pth.tar'.format(args.exp_dir))
def train(train_loader, model, loss_fn, optimizer, epoch, args, tb_logger, start_upd=False):
"""Train for one epoch on the training set.
"""
batch_time = AverageMeter('Time', ':1.2f')
data_time = AverageMeter('Data', ':1.2f')
acc_cls = AverageMeter('Acc@Cls', ':2.2f')
loss_cls_log = AverageMeter('Loss@Cls', ':2.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, acc_cls, loss_cls_log],
prefix="Epoch: [{}]".format(epoch))
# train mode
model.train()
end = time.time()
for i, (images_w,images_s, labels, true_labels, index) in enumerate(train_loader):
data_time.update(time.time() - end)
X_w,X_s, Y, index = images_w.cuda(), images_s.cuda(), labels.cuda(), index.cuda()
Y_true = true_labels.long().detach().cuda()
if args.mixup:
pseudo_label = loss_fn.confidence[index,:].clone().detach()
l = np.random.beta(4, 4)
l = max(l, 1 - l)
idx = torch.randperm(X_w.size(0))
X_w_rand = X_w[idx]
X_s_rand = X_s[idx]
pseudo_label_rand = pseudo_label[idx]
X_w_mix = l * X_w + (1 - l) * X_w_rand
X_s_mix = l * X_s + (1 - l) * X_s_rand
pseudo_label_mix = l * pseudo_label + (1 - l) * pseudo_label_rand
cls_out, feat = model(torch.cat((X_w,X_s,X_w_mix,X_s_mix),0))
batch_size = X_w.shape[0]
cls_out_w,cls_out_s,cls_out_w_mix,cls_out_s_mix = torch.split(cls_out,batch_size,dim=0)
feat_w,feat_s,_,_ = torch.split(feat,batch_size,dim=0)
else:
cls_out, feat = model(torch.cat((X_w,X_s),0))
batch_size = X_w.shape[0]
cls_out_w,cls_out_s = torch.split(cls_out,batch_size,dim=0)
feat_w,feat_s = torch.split(feat,batch_size,dim=0)
if args.records:
if args.mixup:
loss_cls = loss_fn(cls_out_w,cls_out_s,cls_out_w_mix,cls_out_s_mix, feat_w,feat_s, model, index,pseudo_label_mix, start_upd)
else:
loss_cls = loss_fn(cls_out_w,cls_out_s, feat_w,feat_s, model, index, start_upd)
else:
loss_cls = loss_fn(cls_out_w,cls_out_s, index, start_upd)
loss = loss_cls
loss_cls_log.update(loss_cls.item())
# log accuracy
acc = accuracy(cls_out_w, Y_true)[0]
acc_cls.update(acc[0])
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if args.gpu == 0:
tb_logger.log_value('Train Acc', acc_cls.avg, epoch)
tb_logger.log_value('Classification Loss', loss_cls_log.avg, epoch)
def test(model, test_loader, args, epoch, tb_logger, feat_mean=None):
"""test on the test set.
"""
with torch.no_grad():
print('==> Evaluation...')
model.eval()
top1_acc = AverageMeter("Top1")
top5_acc = AverageMeter("Top5")
if feat_mean is not None:
bias = model.module.fc(feat_mean.unsqueeze(0)).detach()
bias = F.softmax(bias, dim=1)
for batch_idx, (images, labels) in enumerate(test_loader):
images, labels = images.cuda(), labels.cuda()
outputs = model(images, eval_only=True)
if feat_mean is not None:
outputs = outputs - torch.log(bias + 1e-9)
acc1, acc5 = accuracy(outputs, labels, topk=(1, 5))
top1_acc.update(acc1[0])
top5_acc.update(acc5[0])
# average
acc_tensors = torch.Tensor([top1_acc.avg, top5_acc.avg]).cuda(args.gpu)
dist.all_reduce(acc_tensors)
acc_tensors /= args.world_size
print('Accuracy is %.2f%% (%.2f%%)' % (acc_tensors[0], acc_tensors[1]))
if args.gpu == 0:
tb_logger.log_value('Top1 Acc', acc_tensors[0], epoch)
tb_logger.log_value('Top5 Acc', acc_tensors[1], epoch)
return acc_tensors[0]
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_file_name='model_best.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, best_file_name)
if __name__ == '__main__':
main()