-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplatescan.py
326 lines (273 loc) · 14.4 KB
/
platescan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import argparse, os, scipy
import numpy as np
import scipy.signal
from skimage import io, exposure, color
from skimage.draw import disk, ellipse
def trisect(image):
# Use the mean value of each pixel row to perform auto-correlation and find the repeated plate edge
print("Trisecting image")
image_gray = color.rgb2gray(image)
h, w = image_gray.shape
rowMeans = [np.mean(image_gray[i, :]) for i in range(0, h)]
# Treat the rowMeans as a signal
# Use the fast fourier transform and auto-correlate to find repeats
ft = np.fft.fft(rowMeans)
cor = np.fft.ifft(ft*np.conjugate(ft)).real
peakPositions = scipy.signal.argrelextrema(cor, np.greater)[0]
peakValues = cor[np.array(peakPositions)]
breakPositions = np.sort(peakPositions[np.argpartition(peakValues, -2)[-2:]])
height = abs(breakPositions[1]-breakPositions[0])
images = [image[0:height, 0:w], image[breakPositions[0]:breakPositions[1], 0:w], image[(h-height):h, 0:w]]
return(images)
def cropImage(image, blank):
image_gray = color.rgb2gray(image)
if blank is not None:
# If a blank is provided, use that to crop the image to the plate
xcor = crossCorrelate(image_gray, blank)
offset = np.where(xcor == xcor.max())
h, w = blank.shape
L = offset[1][0]
R = offset[1][0]+w
T = offset[0][0]
B = offset[0][0]+h
else:
# Plate edge detection; performance highly dependent on lighting and plate type
h, w = image_gray.shape
rowMeans = [np.mean(image_gray[i, :]) for i in range(0, h)]
colMeans = [np.mean(image_gray[:, i]) for i in range(0, w)]
# Smooth curves
rowMeans = scipy.signal.savgol_filter(rowMeans, int(h/15)+1-int(h/15)%2, 3)
colMeans = scipy.signal.savgol_filter(colMeans, int(w/15)+1-int(w/15)%2, 3)
Lpos, Rpos = np.array_split(scipy.signal.argrelextrema(colMeans, np.greater)[0], 2)
L = np.sort(Lpos[np.argpartition(colMeans[Lpos], -1)[-1:]])[0]
R = np.sort(Rpos[np.argpartition(colMeans[Rpos], -1)[-1:]])[0]
Tpos, Bpos = np.array_split(scipy.signal.argrelextrema(rowMeans, np.greater)[0], 2)
T = np.sort(Tpos[np.argpartition(rowMeans[Tpos], -1)[-1:]])[0]
B = np.sort(Bpos[np.argpartition(rowMeans[Bpos], -1)[-1:]])[0]
print("Cropping plate:")
print("{}:{} left to right".format(L, R))
print("{}:{} top to bottom".format(T, B))
return(image[T:B, L:R, :])
def crossCorrelate(a, b, boundary=None):
#Perform a normalized cross-correlation of two arrays
if boundary == 'wrap':
a = wrapImage(a)
aN = (a-np.mean(a))/np.std(a)
bN = (b-np.mean(b))/np.std(b)
xcor = scipy.signal.correlate(aN, bN, mode='valid', method='fft')
return(xcor)
def findGrid(plate, nrows, ncols, layout, r, rmax, xGap, yGap, pad, edge):
#Make an array of spots to use as a mask, cross-correlate with the plate image and find the best-fitting grid points
print(" Finding colonies")
plate_gray = color.rgb2gray(plate)
dim = plate_gray.shape
mask = -np.ones((int(np.ceil((2*(pad+rmax))+((nrows-1)*yGap))), int(np.ceil((2*(pad+rmax))+((ncols-1)*xGap)))))
for y in range(0, nrows):
for x in range(0, ncols):
if layout[y, x]:
mask[disk((pad+rmax+np.floor(y*yGap), pad+rmax+np.floor(x*xGap)), r)] = 1
xcor = crossCorrelate(plate_gray[edge[0]:(dim[0]-edge[2]), edge[1]:(dim[1]-edge[3])], mask)
offset = np.where(xcor == xcor.max())
offset = [offset[0][0]+edge[0], offset[1][0]+edge[1]]
offset = np.array((offset[0]+pad+rmax, offset[1]+pad+rmax))
rowIndex = np.array([round(offset[0]+(y*yGap)) for y in range(0, nrows)], dtype=np.int32)
colIndex = np.array([round(offset[1]+(x*xGap)) for x in range(0, ncols)], dtype=np.int32)
masked = np.copy(plate)
for y in range(0, nrows):
for x in range(0, ncols):
if layout[y, x]:
masked[disk((offset[0]+round(y*yGap), offset[1]+round(x*xGap)), r)] = 1
return(masked, rowIndex, colIndex)
def correctLighting(cell):
#Correct a lighting gradient across a cell by SVD (not used, not necessary?)
h, w = cell.shape
l = np.column_stack((np.repeat(0, h), range(0, h), cell[:, 0]))
r = np.column_stack((np.repeat(w-1, h), range(0, h), cell[:, -1]))
t = np.column_stack((range(0, w), np.repeat(0, w), cell[0, :]))
b = np.column_stack((range(0, w), np.repeat(h-1, w), cell[-1, :]))
xyz = np.row_stack((l, r, t, b))
xyz[:, 0] -= np.mean(xyz[:, 0])
xyz[:, 1] -= np.mean(xyz[:, 1])
xyz[:, 2] -= np.mean(xyz[:, 2])
u, s, v = np.linalg.svd(xyz)
dzdx = v[:, -1][0]
dzdy = v[:, -1][1]
correction = np.zeros((h, w))
for y in range(0, h):
for x in range(0, w):
correction[y, x] = (x * dzdx) + (y * dzdy)
corrected = cell + correction
return(corrected)
def wrapImage(image):
h, w = image.shape
q1 = image[:int(h/2), :int(w/2)]
q2 = image[:int(h/2), int(w/2):]
q3 = image[int(h/2):, :int(w/2)]
q4 = image[int(h/2):, int(w/2):]
row1 = np.concatenate((q4, q3, q4, q3), axis=1)
row2 = np.concatenate((q2, q1, q2, q1), axis=1)
row3 = np.concatenate((q4, q3, q4, q3), axis=1)
row4 = np.concatenate((q2, q1, q2, q1), axis=1)
wrapped = np.concatenate((row1, row2, row3, row4))
return(wrapped)
def findColony(cell, rmin, rmax, pad):
#Find a colony by cross-correlation of ideal circular templates of different radii to create inside and outside regions
cell_gray = color.rgb2gray(cell)
h, w = cell_gray.shape
offsets = []
scores = []
for r in np.arange(rmin, rmax, 0.5):
mask = -np.ones((h, w))
mask[ellipse(int(h/2), int(w/2), r, r)] = 1
xcor = crossCorrelate(cell_gray, mask, boundary='wrap')
offset = np.where(xcor==xcor[int((xcor.shape[0]/2)-pad):int((xcor.shape[0]/2)+pad), int((xcor.shape[1]/2)-pad):int((xcor.shape[1]/2)+pad)].max())
offset = (offset[0][0], offset[1][0])
offsets.append(offset)
scores.append(xcor.max())
best = scores.index(max(scores))
r = np.arange(rmin, rmax, 0.5)[best]
offset = offsets[best]
hili = np.copy(cell)
outside = np.ones(cell_gray.shape, bool)
outside[ellipse(offset[0], offset[1], r, r)] = 0
for channel in range(0, 3):
hili[:, :, channel][outside] = hili[:, :, channel][outside]/2
return(offset[0], offset[1], r, max(scores), hili)
def scoreColony(cell, channel, r, offset):
#Score a colony by summing the pixel array intensities after subtracting the mean intensity of the outside region
if channel == 3:
cell_single = color.rgb2gray(cell)
else:
cell_single = cell[:, :, channel]
h, w = cell_single.shape
outside = np.ones((h, w), bool)
outside[ellipse(offset[0], offset[1], r, r)] = 0
bg = np.mean(cell_single[outside])
fg = np.mean(cell_single[~outside])
bgvar = np.var(cell_single[outside])
fgvar = np.var(cell_single[~outside])
return(bg, fg, bgvar, fgvar)
def scoreGrowth(plate, rowIndex, colIndex, layout, rmin, rmax, pad):
#Find each colony within its cell, then score it according to brightness of pixels inside vs. outside the colony
print(" Scoring growth")
nrows = len(rowIndex)
ncols = len(colIndex)
h, w, c = plate.shape
hilighted = np.copy(plate)
roffsets = np.zeros((nrows, ncols))
coffsets = np.zeros((nrows, ncols))
radii = np.zeros((nrows, ncols))
ccscores = np.zeros((nrows, ncols))
bgs = np.zeros((nrows, ncols, 4))
fgs = np.zeros((nrows, ncols, 4))
bgvars = np.zeros((nrows, ncols, 4))
fgvars = np.zeros((nrows, ncols, 4))
for rid, row in enumerate(rowIndex):
for cid, col in enumerate(colIndex):
if layout[rid, cid]:
print(" Working on cell "+str(rid)+"x"+str(cid))
cell = plate[max(0, row-pad-rmax):min(h, row+pad+rmax), max(0, col-pad-rmax):min(w, col+pad+rmax), :]
roffsets[rid, cid], coffsets[rid, cid], radii[rid, cid], ccscores[rid, cid], hili = findColony(cell, rmin, rmax, pad)
for channel in range(0, 4):
bgs[rid, cid, channel], fgs[rid, cid, channel], bgvars[rid, cid, channel], fgvars[rid, cid, channel] = scoreColony(cell, channel, radii[rid, cid], (roffsets[rid, cid], coffsets[rid, cid]))
hilighted[max(0, row-pad-rmax):min(h, row+pad+rmax), max(0, col-pad-rmax):min(w, col+pad+rmax), :] = hili
return(hilighted, roffsets, coffsets, radii, ccscores, bgs, fgs, bgvars, fgvars)
def formatResults(rowIndex, colIndex, layout, roffsets, coffsets, radii, ccscores, bgs, fgs, bgvars, fgvars):
results = np.empty(np.sum(layout), dtype=([('Strain', 'a3'), ('Row', 'i8'), ('Col', 'i8'), ('PixelRow', 'i8'), ('PixelCol', 'i8'), ('Radius', 'f8'), ('CCScore', 'f8'), ('R_BgMean', 'f8'), ('R_FgMean', 'f8'), ('R_BgVar', 'f8'), ('R_FgVar', 'f8'), ('G_BgMean', 'f8'), ('G_FgMean', 'f8'), ('G_BgVar', 'f8'), ('G_FgVar', 'f8'), ('B_BgMean', 'f8'), ('B_FgMean', 'f8'), ('B_BgVar', 'f8'), ('B_FgVar', 'f8'), ('BgMean', 'f8'), ('FgMean', 'f8'), ('BgVar', 'f8'), ('FgVar', 'f8')]))
i = 0
for row in range(0, len(rowIndex)):
for col in range(0, len(colIndex)):
if layout[row, col]:
results[i]['Strain'] = chr(row+ord("A"))+str(col+1)
results[i]['Row'] = row
results[i]['Col'] = col
results[i]['PixelRow'] = rowIndex[row]+roffsets[row, col]
results[i]['PixelCol'] = colIndex[col]+coffsets[row, col]
results[i]['Radius'] = radii[row, col]
results[i]['CCScore'] = ccscores[row, col]
results[i]['R_BgMean'] = bgs[row, col, 0]
results[i]['R_FgMean'] = fgs[row, col, 0]
results[i]['R_BgVar'] = bgvars[row, col, 0]
results[i]['R_FgVar'] = fgvars[row, col, 0]
results[i]['B_BgMean'] = bgs[row, col, 1]
results[i]['B_FgMean'] = fgs[row, col, 1]
results[i]['B_BgVar'] = bgvars[row, col, 1]
results[i]['B_FgVar'] = fgvars[row, col, 1]
results[i]['G_BgMean'] = bgs[row, col, 2]
results[i]['G_FgMean'] = fgs[row, col, 2]
results[i]['G_BgVar'] = bgvars[row, col, 2]
results[i]['G_FgVar'] = fgvars[row, col, 2]
results[i]['BgMean'] = bgs[row, col, 3]
results[i]['FgMean'] = fgs[row, col, 3]
results[i]['BgVar'] = bgvars[row, col, 3]
results[i]['FgVar'] = fgvars[row, col, 3]
i += 1
return(results)
def outputResults(results, filename):
fo = open(filename, 'w')
for result in results:
for item in result:
fo.write(str(item)+" ")
fo.write("\n")
fo.close()
### MAIN ###
def __main__():
parser = argparse.ArgumentParser(description='Assessing colony growth on arrayed plates.')
parser.add_argument('file', metavar='image_file', help='Image file of colonies arrayed on a plate(s)')
parser.add_argument('-t', '--three', action='store_true', help='Image contains three plates as repeats')
parser.add_argument('-s', '--scan', action='store_true', help='Image was scanned, not photographed')
parser.add_argument('-b', '--blank', metavar='blank_file', help='Image file of a blank plate')
parser.add_argument('-l', '--layout', metavar='layout_file', help='Layout of colonies on the plate')
parser.add_argument('-r', '--radius', default=30, metavar='colony_radius', help='Approximate radius of the colonies in pixels', type=int)
parser.add_argument('--min_r', metavar='min_radius', help='Minimum radius of the colonies in pixels', type=int)
parser.add_argument('--max_r', metavar='max_radius', help='Maximum radius of the colonies in pixels', type=int)
parser.add_argument('-x', '--xgap', default=100, metavar='xgap', help='Horizontal gap between colony centres in pixels', type=int)
parser.add_argument('-y', '--ygap', default=100, metavar='ygap', help='Vertical gap between colony centres in pixels', type=int)
parser.add_argument('-p', '--pad', metavar='pad', help='Area to search outside of colony centres in pixels', type=int)
parser.add_argument('-e', '--edge', default=[0, 0, 0, 0], metavar='edge', nargs=4, help='Plate edge in pixels to be avoided in search (bottom, left, top, right)', type=int)
parser.add_argument('-o', '--output', metavar='output_prefix', help='Prefix for output files')
args = parser.parse_args()
# Default arguments
if args.blank is not None:
blank = io.imread(args.blank, as_gray=True)
else:
blank = None
if args.pad is None:
args.pad = args.xgap/2
if args.min_r is None:
args.min_r = args.radius/2
if args.max_r is None:
args.max_r = args.radius*2
# Get image name and path for output files
if args.output is None:
args.output = os.path.splitext(args.file)[0]
# Import layout file and determine the number of rows and columns
if args.layout is not None:
layout = np.loadtxt(args.layout, dtype='i')
else:
layout = np.ones((8, 12))
nrows, ncols = layout.shape
# Import image
image = io.imread(args.file)
if args.scan:
image = np.fliplr(1-image)
# Slight rescale to improve contrast
p1, p99 = np.percentile(image, (1, 99))
image = exposure.rescale_intensity(image, (p1, p99))
h, w, c = image.shape
if args.three:
plates = trisect(image)
else:
plates = [image]
for pid, plate in enumerate(plates):
print("Plate "+str(pid+1)+":")
cropped = cropImage(image, blank)
io.imsave("{}_{}_cut.png".format(args.output, pid), cropped)
masked, rowIndex, colIndex = findGrid(cropped, nrows, ncols, layout, r=args.radius, rmax=args.max_r, xGap=args.xgap, yGap=args.ygap, pad=args.pad, edge=args.edge)
io.imsave("{}_{}_mask.png".format(args.output, pid), masked)
hilighted, roffsets, coffsets, radii, ccscores, bgs, fgs, bgvars, fgvars = scoreGrowth(cropped, rowIndex, colIndex, layout, rmin=args.min_r, rmax=args.max_r, pad=args.pad)
io.imsave("{}_{}_hili.png".format(args.output, pid), hilighted)
results = formatResults(rowIndex, colIndex, layout, roffsets, coffsets, radii, ccscores, bgs, fgs, bgvars, fgvars)
outputResults(results, "{}_{}.txt".format(args.output, pid))
if __name__ == "__main__":
__main__()