-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
99 lines (74 loc) · 3.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import pandas as pd
import networkx as nx
import os
import argparse
from rich.table import Table
from rich.console import Console
import torch
from pytorch3d.loss import chamfer_distance
import preprocessing
import models
import wandb
import training
def parse_arguments():
parser = argparse.ArgumentParser(description='clarifyGAE arguments')
parser.add_argument("-m", "--mode", type=str, default = "train",
help="Pipeline Mode: preprocess,train,test")
parser.add_argument("-i", "--inputdirpath", type=str,
help="Input directory path where PDB data is stored")
parser.add_argument("-o", "--outputdirpath", type=str,
help="Output directory path where results will be stored ")
parser.add_argument("-s", "--studyname", type=str,
help="Name of study")
args = parser.parse_args()
return args
def main():
args = parse_arguments()
mode = args.mode
data_dir_path = args.inputdirpath
output_dir_path = args.outputdirpath
studyname = args.studyname
preprocess_output_path = os.path.join(output_dir_path, "preprocessed")
training_output_path = os.path.join(output_dir_path, "train")
# modularize hyperparameter selection
epochs = 1000
num_features = 2
pointcloudsize = 140
withval = True
withFeatures= True
batch_size = 1
augment_num = 1 # no augmentation
latent_dimension = 128
if "preprocess" in mode:
print("\n#------------------------------ Preprocessing ----------------------------#\n")
data_list, _ = preprocessing.create_pyg_datalist(data_dir_path, pointcloudsize, withfeatures=withFeatures, augment_num=1)
train_loader, test_loader, val_loader = preprocessing.create_dataloaders(data_list, batch_size=batch_size, with_val=withval)
if not os.path.exists(preprocess_output_path):
os.mkdir(preprocess_output_path)
torch.save(train_loader, os.path.join(preprocess_output_path,f'train_dataloader_{studyname}.pth'))
torch.save(test_loader, os.path.join(preprocess_output_path,f'test_dataloader_{studyname}.pth'))
if withval:
torch.save(val_loader, os.path.join(preprocess_output_path,f'val_dataloader_{studyname}.pth'))
if "train" in mode:
print("\n#------------------------------ 1. Training Point Cloud Autoencoder ----------------------------#\n")
if not "preprocess" in mode:
train_loader = torch.load(os.path.join(preprocess_output_path,f'train_dataloader_{studyname}.pth'))
test_loader = torch.load(os.path.join(preprocess_output_path,f'test_dataloader_{studyname}.pth'))
if withval:
val_loader = torch.load(os.path.join(preprocess_output_path,f'val_dataloader_{studyname}.pth'))
model = models.PointAutoEncoderV2(num_points=pointcloudsize, latent_dim=latent_dimension, num_features=num_features)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
criterion = ChamferDistance()
intermediate_save_path = None
if epochs >= 500:
intermediate_save_path1 = os.path.join(training_output_path,f'trained_model_{studyname}_100epochs.pth')
intermediate_save_path2 = os.path.join(training_output_path,f'trained_model_{studyname}_500epochs.pth')
intermediate_save_path = (intermediate_save_path1, intermediate_save_path2)
wandb.init(project="DiffRNAFold", entity="diffrnafold")
if not os.path.exists(training_output_path):
os.mkdir(training_output_path)
trained_model = training.train_model(model, optimizer, train_loader, epochs, criterion, val_loader, intermediate_save_path)
torch.save(trained_model.state_dict(), os.path.join(training_output_path,f'trained_model_{studyname}_{epochs}epochs.pth'))
if __name__ == "__main__":
main()