forked from Gabaldonlab/Q-PHAST
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·230 lines (165 loc) · 13.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# A python3 script to run the Q-PHAST pipeline from any OS
############# ENV ############
# imports
import os, sys, argparse, subprocess, re, time
# general functions
# add the functions
if "/" in os.getcwd(): os_sep = "/"
elif "\\" in os.getcwd(): os_sep = "\\"
else: raise ValueError("unknown OS. This script is %s"%__file__)
pipeline_dir = os_sep.join(os.path.realpath(__file__).split(os_sep)[0:-1])
sys.path.insert(0, '%s%sscripts'%(pipeline_dir, os_sep))
import main_functions as fun
description = """
This is a pipeline to measure antifungal susceptibility from image data in any OS. Run with:
'python main.py <arguments>'
Check the github repository (https://github.comGabaldonlab/Q-PHAST) to know how to use this script.
"""
# mandatory arguments (if run in command line)
parser = argparse.ArgumentParser(description=description, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--os", dest="os", required=False, default=None, type=str, help="The Operating System. It should be 'windows', 'linux' or 'mac'")
parser.add_argument("--output", dest="output", required=False, default=None, type=str, help="The output directory.")
parser.add_argument("--docker_image", dest="docker_image", required=False, default=None, type=str, help="The name of the docker image in the format <name>:<tag>. All the versions of the images are in https://hub.docker.com/repository/docker/mikischikora/q-phast. For example, you can set '--docker_image mikischikora/q-phast:v1' to run version 1.")
parser.add_argument("--input", dest="input", required=False, default=None, type=str, help="A folder with the plate layout and the raw images to analyze. It should contain one subfolder (named after the plate batch) with the images of each 'plate_batch'.")
# optional arguments
parser.add_argument("--min_nAUC_to_beConsideredGrowing", dest="min_nAUC_to_beConsideredGrowing", required=False, type=float, default=0.02, help="A float that indicates the minimum nAUC to be considered growing in susceptibility measures. This may depend on the experiment. This is added in the 'is_growing' field.")
parser.add_argument("--hours_experiment", dest="hours_experiment", required=False, type=float, default=24.0, help="A float that indicates the total experiment hours that are used to calculate the fitness estimates.")
parser.add_argument("--enhance_image_contrast", dest="enhance_image_contrast", required=False, type=str, default='True', help="True/False. Enhances contrast of images. Only for developers.")
parser.add_argument("--auto_accept", dest="auto_accept", required=False, default=False, action="store_true", help="Automatically accepts all the coordinates and bad spots. Only for developers.")
# developer args
parser.add_argument("--keep_tmp_files", dest="keep_tmp_files", required=False, default=False, action="store_true", help="Keep the intermediate files (for debugging). Only for developers.")
parser.add_argument("--replace", dest="replace", required=False, default=False, action="store_true", help="Remove the --output folder to repeat any previously run processes. Only for developers.")
parser.add_argument("--reference_plate", dest="reference_plate", required=False, type=str, default=None, help="The plate to take as reference. It should be a plate with high growth in many spots. For example 'SC1-plate1' could be passed to this argument. Only for developers.")
parser.add_argument("--break_after", dest="break_after", required=False, type=str, default=None, help="Break after some steps. Only for developers.")
parser.add_argument("--coords_1st_plate", dest="coords_1st_plate", required=False, default=False, action="store_true", help="Automatically transfers the coordinates of the 1st plate. Only for developers.")
parser.add_argument("--contrast_enhancement_image", dest="contrast_enhancement_image", required=False, type=str, default='auto', help="The plate to take as reference for contrast correction. It can be 'image_high_contrast' or 'auto'. Our testing suggests that 'auto' is better. Only for developers.")
parser.add_argument("--parms_colonyzer", dest="parms_colonyzer", required=False, type=str, default="greenlab,lc,diffims", help="Set of extra parameters to pass to colonyzer as --<parm>.")
# parse
opt = parser.parse_args()
# pass the opt to functions
fun.opt = opt
# log
print("\n")
fun.print_with_runtime("Running Q-PHAST...")
##############################
##### RUN GUI TO DEFINE ARGUMENTS #########
# only get arguments through GUI if there are no arguments passed
if len(sys.argv)==1:
# generate a series of buttons that select common arguments
fun.generate_os_window()
fun.generate_docker_image_window()
# generate the window of each type of args
fun.generate_analyze_images_window_mandatory()
# OLD # fun.generate_boolean_args_window(title='Keep temporary files\nat the end?', subtitle="(set 'Yes' to debug)", textVal_list=[(True, "Yes", "Arial"), (False, "No", "Arial bold")], opt_att="keep_tmp_files")
# OLD # fun.generate_boolean_args_window(title='Skip manual verification of\ncoordinates and bad spots?', subtitle="(set 'Yes' at your own risk)", textVal_list=[(True, "Yes", "Arial"), (False, "No", "Arial")], opt_att="auto_accept")
# generate windows for boolean arguments
fun.generate_boolean_args_window(title='Manual verification of\ncoordinates and bad spots?', subtitle="'Yes' ~ accurate results\n'No' ~ faster, risky run", textVal_list=[(True, "Yes", "Arial"), (False, "No", "Arial")], opt_att="auto_accept_reverse")
opt.auto_accept = {True:False, False:True}[opt.auto_accept_reverse]
# define the output and input
opt.output = "%s%soutput_%s"%(opt.output, fun.get_os_sep(), fun.pipeline_name)
# generate the image analysis
fun.generate_analyze_images_window_optional()
# generate the closing window
fun.generate_closing_window("Running %s..."%fun.pipeline_name)
# log
#print("Running pipeline...")
###########################################
# keep start time
start_time = time.time()
###### DEBUG INPUTS #########
# check that the mandatory args are not none
if opt.docker_image is None: raise ValueError("You should provide a string in --docker_image")
if opt.input is None: raise ValueError("You should provide a string in --input")
if opt.output is None: raise ValueError("You should provide a string in --output")
opt.input = fun.get_fullpath(opt.input)
opt.output = fun.get_fullpath(opt.output)
if not os.path.isdir(opt.input): raise ValueError("The folder provided in --input does not exist")
if opt.contrast_enhancement_image not in {"image_high_contrast", "auto"}: raise ValueError("contrast_enhancement_image should be 'image_high_contrast' or 'auto'")
# check parms colonyzer
set_parms = set(opt.parms_colonyzer.split(","))
strange_parms = set_parms.difference({"greenlab", "lc", "diffims", "cut", "edgemask", "none"})
if len(strange_parms)>0: raise ValueError("strange values passed to --parms_colonyzer: %s"%strange_parms)
if "none" in set_parms and len(set_parms)!=1: raise ValueError("if you specify none to --parms_colonyzer, there can't be anything else")
# deifine the parms colonyzer
fun.parms_colonyzer = tuple(sorted(set_parms))
# replace
if opt.replace is True: fun.delete_folder(opt.output)
# check the OS
if not opt.os in {"linux", "mac", "windows"}: raise ValueError("--os should have 'linux', 'mac' or 'windows'")
# log
fun.print_with_runtime("Writing results into the output folder '%s', using input files from '%s'"%(opt.output, opt.input))
# print the cmd
arguments = " ".join(["--%s %s"%(arg_name, arg_val) for arg_name, arg_val in [("os", opt.os), ("input", opt.input), ("output", opt.output), ("docker_image", opt.docker_image), ("min_nAUC_to_beConsideredGrowing", opt.min_nAUC_to_beConsideredGrowing), ("hours_experiment", opt.hours_experiment), ("enhance_image_contrast", opt.enhance_image_contrast), ("parms_colonyzer", opt.parms_colonyzer)]])
if opt.auto_accept is True: arguments += " --auto_accept"
full_command = "%s %s%smain.py %s"%(sys.executable, pipeline_dir, os_sep, arguments)
fun.print_with_runtime("Executing the following command (you may use it to reproduce the analysis):\n---\n%s\n---"%full_command)
# check that the docker image can be run
fun.print_with_runtime("Trying to run docker image. If this fails it may be because either the image is not in your system or docker is not properly initialized.")
fun.run_cmd('docker run -it --rm %s bash -c "sleep 1"'%(opt.docker_image))
#############################
######### GENERATE THE DOCKER CMD AND RUN #################
# define the plate layout file
plate_layout_file = "%s%s%s"%(opt.input, fun.get_os_sep(), fun.get_plate_layout_file_from_input_dir(opt.input))
# make the output
opt.output = fun.get_fullpath(opt.output)
fun.make_folder(opt.output)
# define final file
final_file = "%s%sextended_outputs%sQ-PHAST_end_report.txt"%(opt.output, fun.get_os_sep(), fun.get_os_sep())
if not fun.file_is_empty(final_file):
print("WARNING: The file Q-PHAST_end_report.txt exists, so that Q-PHAST was previously run in this output directory. If you want to re-run here, first remove the output directory. Exiting...")
sys.exit(0)
# define the inputs_dir, where the small inputs will be stored
tmp_input_dir = "%s%stmp_small_inputs"%(opt.output, fun.get_os_sep())
copied_plate_layout = "%s%splate_layout.xlsx"%(tmp_input_dir, fun.get_os_sep())
full_command_file = "%s%scommand.txt"%(tmp_input_dir, fun.get_os_sep())
# define bools that indicate if there was a previous run
plate_layout_is_different = (not fun.file_is_empty(copied_plate_layout) and not fun.get_if_excels_are_equal(plate_layout_file, copied_plate_layout))
cmd_is_different = (not fun.file_is_empty(full_command_file) and open(full_command_file, "r").readlines()[0].strip()!=full_command)
# if there was a previous run (copied_plate_layout exists), replace everything if the plate layout changed
if plate_layout_is_different or cmd_is_different: raise ValueError("You are providing a different plate layout, or running with a different command, than in a previous run. You should run with the --replace argument.")
# make the input dir
fun.make_folder(opt.output)
fun.delete_folder(tmp_input_dir); fun.make_folder(tmp_input_dir)
# init command with general features
docker_cmd = 'docker run --rm -it -e contrast_enhancement_image=%s -e hours_experiment=%s -e KEEP_TMP_FILES=%s -e min_nAUC_to_beConsideredGrowing=%s -e enhance_image_contrast=%s -e reference_plate=%s -e PARMS_COLONYZER=%s -v "%s":/small_inputs -v "%s":/output -v "%s":/images'%(opt.contrast_enhancement_image, opt.hours_experiment, opt.keep_tmp_files, opt.min_nAUC_to_beConsideredGrowing, opt.enhance_image_contrast, str(opt.reference_plate), opt.parms_colonyzer, tmp_input_dir, opt.output, opt.input)
# add the scripts from outside
docker_cmd += ' -v "%s%sscripts":/workdir_app/scripts'%(pipeline_dir, fun.get_os_sep())
# pass the plate layout to docker
fun.copy_file(plate_layout_file, copied_plate_layout)
# write command into tmp file
open(full_command_file, "w").write(full_command+"\n")
# get the corrected images
print("\n")
fun.print_with_runtime("STEP 1/5: Getting cropped, flipped images...")
fun.run_docker_cmd("%s -e MODULE=analyze_images_process_images"%(docker_cmd), ["%s%sanalyze_images_process_images_correct_finish.txt"%(opt.output, fun.get_os_sep())])
if opt.break_after=="step1":
print("Exiting pipeline after step 1...")
sys.exit(0)
# select the coordinates based on user input
print("\n")
fun.print_with_runtime("STEP 2/5: Selecting the coordinates of the spots...")
fun.get_colonyzer_coordinates_GUI(opt.output, docker_cmd)
# get fitness measurements
print("\n")
fun.print_with_runtime("STEP 3/5: Getting fitness measurements...")
fun.run_docker_cmd("%s -e MODULE=get_fitness_measurements"%(docker_cmd), ["%s%sget_fitness_measurements_correct_finish.txt"%(opt.output, fun.get_os_sep())])
# validate bad spots
print("\n")
fun.print_with_runtime("STEP 4/5: Manually-curating bad spots...")
fun.generate_df_bad_spots_automatic_validated(opt.output)
if opt.break_after=="step4":
print("Exiting pipeline after step 4...")
sys.exit(0)
# Get the relative fitness and susceptibility measurements
print("\n")
fun.print_with_runtime("STEP 5/5: Getting integrated fitness and susceptibility measurements...")
fun.run_docker_cmd("%s -e MODULE=get_rel_fitness_and_susceptibility_measurements"%(docker_cmd), ["%s%sget_rel_fitness_and_susceptibility_measurements_correct_finish.txt"%(opt.output, fun.get_os_sep())])
# clean
for f in ['analyze_images_run_colonyzer_subset_images_correct_finish.txt', 'analyze_images_process_images_correct_finish.txt', 'get_fitness_measurements_correct_finish.txt', 'get_rel_fitness_and_susceptibility_measurements_correct_finish.txt']: fun.remove_file("%s%s%s"%(opt.output, fun.get_os_sep(), f))
fun.delete_folder(tmp_input_dir)
#fun.delete_folder("%s%sextended_outputs%sreduced_input_dir.zip"%(opt.output, fun.get_os_sep(), fun.get_os_sep()))
# log
elapsed_time = time.time()-start_time
open(final_file, "w").write("Q-PHAST finished correctly in %.2f seconds.\n\nThis was the command:\n---\n%s\n---"%(elapsed_time, full_command))
fun.print_with_runtime("main.py worked successfully in %.2f seconds!"%(elapsed_time))
###########################################################