-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
555 lines (470 loc) · 22.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from torch.nn.utils import clip_grad_norm_
from torch import nn, optim, autograd
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from metrics import Metrics
from dataset import MyDataset
from utils import *
from hparams import *
class PriorNet(nn.Module):
def __init__(self):
super().__init__()
self.core = nn.Sequential(nn.Linear(GRU_DIM, FC_DIM),
nn.BatchNorm1d(FC_DIM),
nn.Tanh(),
nn.Linear(FC_DIM, FC_DIM),
nn.BatchNorm1d(FC_DIM),
nn.Tanh())
self.mu_layer = nn.Linear(FC_DIM, FC_DIM)
self.logvar_layer = nn.Linear(FC_DIM, FC_DIM)
def forward(self, x):
h = self.core(x)
mu = self.mu_layer(h)
logvar = self.logvar_layer(h)
return mu, logvar
class RecognitionNet(nn.Module):
def __init__(self):
super().__init__()
self.core = nn.Sequential(nn.Linear(3*GRU_DIM, FC_DIM),
nn.BatchNorm1d(FC_DIM),
nn.Tanh(),
nn.Linear(FC_DIM, FC_DIM),
nn.BatchNorm1d(FC_DIM),
nn.Tanh())
self.mu_layer = nn.Linear(FC_DIM, FC_DIM)
self.logvar_layer = nn.Linear(FC_DIM, FC_DIM)
def forward(self, x):
h = self.core(x)
mu = self.mu_layer(h)
logvar = self.logvar_layer(h)
return mu, logvar
class DialogWAE(nn.Module):
def __init__(self, train_dir, test_dir, word2vec_dir,
batch_size, device):
super().__init__()
self.batch_size = batch_size
self.epoch = 1
self.device = device
self.data = MyDataset(train_dir)
self.test_data = MyDataset(test_dir, self.data.vocab)
self.test_data_loader = DataLoader(self.test_data, 1, shuffle=True,
collate_fn = self.data.collector)
self.data_loader = DataLoader(self.data, self.batch_size, shuffle=True,
collate_fn = self.data.collector)
self.embedding = self.init_word2vec(word2vec_dir)
self.metrics = Metrics(self.embedding.weight.data.numpy())
self.UEnc = nn.GRU(EMBEDDING, GRU_DIM,
bidirectional=True,
batch_first = True)
self.CEnc = nn.GRU(GRU_DIM*2 + 2, GRU_DIM,
batch_first = True)
self.Q = nn.Sequential(nn.Linear(FC_DIM, FC_DIM),
nn.BatchNorm1d(FC_DIM),
nn.ReLU(),
nn.Linear(FC_DIM, FC_DIM),
nn.BatchNorm1d(FC_DIM),
nn.ReLU(),
nn.Linear(FC_DIM, LATENT_DIM))
self.G = nn.Sequential(nn.Linear(FC_DIM, FC_DIM),
nn.BatchNorm1d(FC_DIM),
nn.ReLU(),
nn.Linear(FC_DIM, FC_DIM),
nn.BatchNorm1d(FC_DIM),
nn.ReLU(),
nn.Linear(FC_DIM, LATENT_DIM))
self.D = nn.Sequential(nn.Linear(FC_DIM + GRU_DIM, FC_DIM_D),
nn.BatchNorm1d(FC_DIM_D),
# nn.ReLU(),
nn.LeakyReLU(0.2),
nn.Linear(FC_DIM_D, FC_DIM_D),
nn.BatchNorm1d(FC_DIM_D),
nn.LeakyReLU(0.2),
# nn.ReLU(),
nn.Linear(FC_DIM_D, 1))
self.PriNet = PriorNet()
self.RecNet = RecognitionNet()
self.Dec = nn.GRU(EMBEDDING, LATENT_DIM + GRU_DIM,
batch_first = True)
self.dec_projector = nn.Linear(LATENT_DIM + GRU_DIM, VOCAB_SIZE)
self.init_weights()
nn.init.uniform_(self.dec_projector.weight, -0.1, 0.1)
self.optimizer_gen = optim.RMSprop(list(self.Q.parameters()) \
+list(self.G.parameters()) \
+list(self.PriNet.parameters()) \
+list(self.RecNet.parameters()), LR_GEN)
self.optimizer_discriminator = optim.RMSprop(self.D.parameters(), LR_DISC)
self.encoder = nn.ModuleList([self.embedding,
self.UEnc,
self.CEnc])
self.decoder = nn.ModuleList([self.embedding,
self.Dec,
self.dec_projector])
self.optimizer_reconstruction = optim.SGD(list(self.encoder.parameters()) \
+list(self.RecNet.parameters()) \
+list(self.Q.parameters()) \
+list(self.decoder.parameters()),
LR_RECON)
self.lr_decay = optim.lr_scheduler.StepLR(self.optimizer_reconstruction,
10, 0.6)
def init_weights(self):
for layer in self.modules():
if type(layer) == nn.Linear:
nn.init.uniform_(layer.weight, -INIT_SCALE, INIT_SCALE)
layer.bias.data.fill_(0)
elif type(layer) == nn.GRU:
for w in layer.parameters():
if w.dim()>1:
nn.init.orthogonal_(w)
def init_word2vec(self, word2vec_dir):
if word2vec_dir:
SIZE = 1.2 * 10**6
found = 0
word2vec_pretrained = torch.randn(VOCAB_SIZE,200)
word2vec_pretrained[self.data.PAD] = torch.zeros(200)
with open(word2vec_dir, 'r') as f:
for entry in f:
entry = entry.strip().split(" ")
if entry[0] in self.data.vocab['word_to_num']:
idx = self.data.vocab['word_to_num'][entry[0]]
word2vec_pretrained[idx] = torch.tensor(list(map(float, entry[1:])))
found += 1
if found == VOCAB_SIZE:
break
print("Done Initializing Word2Vec (found %d/%d)" %(found, VOCAB_SIZE))
return nn.Embedding.from_pretrained(word2vec_pretrained, freeze=False)
else:
return nn.Embedding(VOCAB_SIZE, 200, padding_idx = self.data.PAD)
def forward(self, X, Xlen):
c = self.encode_c(X, Xlen)
eps_prior = self.sample_prior(c)
z_prior = self.G(eps_prior)
init_state = torch.unsqueeze(torch.cat((z_prior, c), 1), 0)
return self.decode(None, init_state)
def discriminator_loss(self, z_prior, z_posterior, c):
prior_input = torch.cat((z_prior, c), -1)
posterior_input = torch.cat((z_posterior, c), -1)
d_prior = self.D(prior_input)
d_posterior = self.D(posterior_input)
loss = torch.mean(d_posterior) - torch.mean(d_prior)
return loss
def gradient_penalty(self, z_prior, z_posterior, c):
batch_size = c.size(0)
alpha = torch.rand((batch_size, 1)).to(self.device)
alpha = alpha.expand(z_prior.size())
interpolates = alpha * z_prior.data + (1-alpha) * z_posterior.data
interpolates.requires_grad = True
d_interpolates = torch.mean(self.D(torch.cat((interpolates, c), -1)))
grad_outputs = torch.FloatTensor([1]).to(self.device)
grad = autograd.grad(d_interpolates, interpolates,
grad_outputs = grad_outputs,
only_inputs = True, create_graph = True,
retain_graph=True)[0]
grad_norm = torch.norm(grad, p = 2, dim = 1)
penalty = (grad_norm - 1) ** 2
return torch.mean(penalty)
def reconstruction_loss(self, pred, target):
target = target.contiguous().view(-1)
mask = [idx for idx, val in enumerate(target) if val != self.data.PAD]
mask = torch.tensor(mask).to(self.device)
pred = F.log_softmax(pred, -1).view(-1, VOCAB_SIZE)
pred = torch.index_select(pred, 0, mask)
target = torch.index_select(target, 0, mask)
loss = F.nll_loss(pred, target)
return loss
def combine_context(self, X, lengths, X_raw):
batch_size = len(lengths)
context_window = max(lengths)
LISTENER_VECTOR = [1,0]
SPEAKER_VECTOR = [0,1]
speaker_first = [SPEAKER_VECTOR if i%2==0 else LISTENER_VECTOR
for i in range(context_window)]
listener_first = [LISTENER_VECTOR if i%2==0 else SPEAKER_VECTOR
for i in range(context_window)]
floors = []
new_X = list()
offset = 0
for length in lengths:
segment = X[offset:offset+length]
floor = speaker_first if length%2==0 else listener_first
if X_raw[offset][1] == self.data.SOD:
floor[0] = LISTENER_VECTOR
floors.append(floor)
segment_len, dim = segment.shape
segment_padded = torch.cat((segment,
torch.randn(context_window - segment_len, dim)\
.to(self.device)))
new_X.append(segment_padded)
offset += length
X = torch.stack(new_X, 0)
floors = torch.tensor(floors, dtype=torch.float).to(self.device)
return torch.cat((X, floors), 2)
def encode_x(self, Y, Ylen):
Ylen_sorted, ids = torch.sort(Ylen, descending=True)
_, ids_reverse = torch.sort(ids, descending=False)
Y_sorted = torch.index_select(Y, 0, ids)
Y_sorted = Y_sorted[:,1:]
Ylen_sorted -= 1
Y_embed = self.embedding(Y_sorted)
#Dropout
Y_embed = F.dropout(Y_embed, p=0.5, training=self.encoder.training)
Y_packed = pack_padded_sequence(Y_embed,
Ylen_sorted,
batch_first = True)
_, res = self.UEnc(Y_packed)
Y_encoded = torch.cat([res[0], res[1]], dim=1)
Y_ordered = torch.index_select(Y_encoded, 0, ids_reverse)
return Y_ordered
def encode_c(self, X, Xlen):
original_size = X.size()
batch_size = original_size[0]
real_utts = torch.tensor([i for i,x in enumerate(Xlen) if x > 0]).to(self.device)
X_real = torch.index_select(X.view(-1, original_size[-1]),
0,
real_utts)
Xlen_real = torch.index_select(Xlen, 0, real_utts)
Xlen_sorted, ids = torch.sort(Xlen_real, descending=True)
_, ids_reverse = torch.sort(ids, descending=False)
X_sorted = torch.index_select(X_real, 0, ids)
X_sorted = X_sorted[:,1:]
Xlen_sorted -= 1
X_embed = self.embedding(X_sorted)
#Dropout
X_embed = F.dropout(X_embed, p=0.5, training=self.encoder.training)
X_packed = pack_padded_sequence(X_embed,
Xlen_sorted,
batch_first=True)
_, res = self.UEnc(X_packed)
X_encoded = torch.cat([res[0], res[1]], dim=1)
X_ordered = torch.index_select(X_encoded, 0, ids_reverse)
context_lengths = torch.sum(Xlen.view(original_size[:-1])>0, 1)
X_contexts = self.combine_context(X_ordered, context_lengths, X_real)
#Dropout
X_contexts = F.dropout(X_contexts, p=0.25, training=self.encoder.training)
Clen_sorted, ids = torch.sort(context_lengths, descending=True)
_, ids_reverse = torch.sort(ids, descending=False)
C_sorted = torch.index_select(X_contexts, 0, ids)
C_packed = pack_padded_sequence(C_sorted,
Clen_sorted,
batch_first = True)
_, C_encoded = self.CEnc(C_packed)
C_ordered = torch.index_select(torch.squeeze(C_encoded, 0),
0,
ids_reverse)
return C_ordered
def sample_prior(self, c):
batch_size = c.size(0)
mu, logvar = self.PriNet(c)
stddev = torch.exp(0.5*logvar)
noise = torch.randn((batch_size, LATENT_DIM)).to(self.device)
return stddev * noise + mu
def sample_posterior(self, x, c):
batch_size = c.size(0)
xc = torch.cat((x,c), 1)
mu, logvar = self.RecNet(xc)
stddev = torch.exp(0.5*logvar)
noise = torch.randn((batch_size, LATENT_DIM)).to(self.device)
return stddev * noise + mu
def decode(self, decoder_input, init_state):
if decoder_input:
res, _ = self.Dec(decoder_input, init_state)
return res
else:
# Dynamic decoding
batch_size = init_state.size(1)
decoder_input = torch.full((batch_size, 1), self.data.SOS,
dtype=torch.long).to(self.device)
h = init_state
decoder_output = list()
decoder_output_lengths = torch.zeros(batch_size).to(self.device)
for i in range(MAX_UTT):
decoder_input = self.embedding(decoder_input)
out, h = self.Dec(decoder_input, h)
out = self.dec_projector(out)
pred = torch.argmax(out, -1)
decoder_output.append(out)
ended = pred == self.data.EOS
running = decoder_output_lengths == 0
new_ended = ended.view(-1) * running
ids = [idx for idx, v in enumerate(new_ended) if v > 0]
decoder_output_lengths[ids] = i + 1
decoder_input = pred
not_ended = decoder_output_lengths == 0
ids = [idx for idx, v in enumerate(not_ended) if v > 0]
decoder_output_lengths[ids] = MAX_UTT
decoder_output = torch.cat(decoder_output, 1)
return decoder_output, decoder_output_lengths
def disc_step(self, batch):
self.optimizer_discriminator.zero_grad()
X, Xlen, Y, Ylen = batch
X = X.to(self.device)
Xlen = Xlen.to(self.device)
Y = Y.to(self.device)
Ylen = Ylen.to(self.device)
c = self.encode_c(X, Xlen)
x = self.encode_x(Y, Ylen)
eps_prior = self.sample_prior(c)
eps_posterior = self.sample_posterior(x, c)
z_prior = self.G(eps_prior)
z_posterior = self.Q(eps_posterior)
disc_loss = self.discriminator_loss(z_prior.detach(), z_posterior.detach(), c.detach())
# disc_loss.backward()
grad_penalty = self.gradient_penalty(z_prior, z_posterior, c.detach())
loss = disc_loss + LAMBDA_D * grad_penalty
loss.backward()
self.optimizer_discriminator.step()
return loss, disc_loss
def fit(self, epochs, test_every):
loss_recon_train = []
loss_disc_train = []
loss_disc_with_grad_train = []
loss_gen_train = []
bleus0, bleus1 = [], []
for _ in range(epochs):
self.train()
loss_recon_epoch = []
data = iter(self.data_loader)
batch = next(data, None)
while batch:
#setup
X, Xlen, Y, Ylen = batch
X = X.to(self.device)
Xlen = Xlen.to(self.device)
Y = Y.to(self.device)
Ylen = Ylen.to(self.device)
#optimize reconstruction
self.optimizer_reconstruction.zero_grad()
self.encoder.train()
self.decoder.train()
c = self.encode_c(X, Xlen)
x = self.encode_x(Y, Ylen)
eps_posterior = self.sample_posterior(x, c)
z_posterior = self.Q(eps_posterior)
init_state = torch.unsqueeze(torch.cat((z_posterior, c), 1), 0)
targets = Y[:,:-1]
targetslen = Ylen - 1
targetslen_sorted, ids = torch.sort(targetslen, descending=True)
_, ids_reverse = torch.sort(ids, descending=False)
targets_sorted = torch.index_select(targets, 0, ids)
targets_embed = self.embedding(targets_sorted)
#Dropout
targets_embed = F.dropout(targets_embed, p=0.5,
training=self.decoder.training)
decoder_input = pack_padded_sequence(targets_embed,
targetslen_sorted,
batch_first = True)
pred_packed = self.decode(decoder_input, init_state)
pred, _ = pad_packed_sequence(pred_packed,
batch_first=True)
pred = torch.index_select(pred, 0, ids_reverse)
pred = self.dec_projector(pred)
reconstruction_loss = self.reconstruction_loss(pred, Y[:,1:])
loss_recon_epoch.append(reconstruction_loss.item())
reconstruction_loss.backward()
clip_grad_norm_(list(self.encoder.parameters())
+list(self.decoder.parameters()), MAX_NORM)
self.optimizer_reconstruction.step()
#optimize generator
self.encoder.eval()
for p in self.D.parameters():
p.requires_grad = False
self.optimizer_gen.zero_grad()
c = self.encode_c(X, Xlen)
x = self.encode_x(Y, Ylen)
eps_prior = self.sample_prior(c.detach())
eps_posterior = self.sample_posterior(x.detach(), c.detach())
z_prior = self.G(eps_prior)
z_posterior = self.Q(eps_posterior)
gen_loss = -1 * self.discriminator_loss(z_prior, z_posterior, c.detach())
loss_gen_train.append(gen_loss.item())
gen_loss.backward()
self.optimizer_gen.step()
for p in self.D.parameters():
p.requires_grad = True
#optimize discriminator
self.encoder.eval()
self.D.train()
for _ in range(N_CRITIC):
loss_with_grad, loss = self.disc_step(batch)
batch = next(data, None)
if not batch:
break
loss_disc_with_grad_train.append(loss_with_grad.item())
loss_disc_train.append(loss.item())
self.lr_decay.step()
loss_recon_train.append(mean(loss_recon_epoch))
print("\n[Epcoh %d] ----------Mean Loss: %f----------"%(self.epoch, loss_recon_train[-1]))
if self.epoch % test_every == 0:
bleu0, bleu1 = self.test()
bleus0.append(bleu0)
bleus1.append(bleu1)
if len(bleus0) > 1:
plt.plot(bleus0, label='bleus0')
plt.plot(bleus1, label='bleus1')
plt.title(label='Test BLEU')
plt.legend()
plt.show()
ckpt_name = 'checkpoints/model' + str(self.epoch) + '.pkl'
self.epoch += 1
torch.save(self, ckpt_name)
copyfile(ckpt_name, 'checkpoints/model.pkl')
print("*** [Train]")
print("*** Context")
for utt in X[0]:
x = to_string(self.data.to_text(utt.tolist()))
if len(x) > 0:
print(x)
print("*** Response")
x = torch.argmax(pred, -1)
print('target:', to_string(self.data.to_text(targets[0,1:].tolist())))
print('predic:', to_string(self.data.to_text(x[0].tolist())))
if self.epoch > 2:
plt.figure(figsize=(20,10))
plt.subplot(221)
plt.plot(loss_disc_train, label='train')
plt.title(label='Discriminator')
plt.legend()
plt.subplot(222)
plt.plot(loss_gen_train, label='train')
plt.title(label='Generator')
plt.legend()
plt.subplot(223)
plt.plot(loss_disc_with_grad_train, label='train')
plt.title(label='Discriminator With Grad Penalty')
plt.legend()
plt.subplot(224)
plt.plot(loss_recon_train, label='train')
plt.title(label='Reconstruction')
plt.legend()
plt.show()
def test(self):
self.eval()
self.encoder.eval()
self.decoder.eval()
bleu0 = []
bleu1 = []
for sample in iter(self.test_data_loader):
x, xlen, y, ylen = sample
x = x.to(self.device)
xlen = xlen.to(self.device)
pred, predlen = self(x, xlen)
pred = torch.argmax(pred, -1)
pred = self.data.to_text(pred[0].tolist())
predlen = int(predlen.item())
target = self.data.to_text(y[0].tolist())[1:]
bleu = self.metrics.sim_bleu(pred, target)
bleu0.append(bleu[0])
bleu1.append(bleu[1])
# print("*** [Test]")
# print("*** Context")
# for utt in x[0]:
# x = to_string(self.data.to_text(utt.tolist()))
# if len(x) > 0:
# print(x)
# print("*** Response")
# x = torch.argmax(pred, -1)
# print('target:', to_string(self.data.to_text(target[0].tolist())))
# print('predic:', to_string(self.data.to_text(x[0].tolist())))
return mean(bleu0), mean(bleu1)