diff --git a/n3fit/src/n3fit/model_gen.py b/n3fit/src/n3fit/model_gen.py index 6825d1cfba..d96e96f5cb 100644 --- a/n3fit/src/n3fit/model_gen.py +++ b/n3fit/src/n3fit/model_gen.py @@ -594,8 +594,8 @@ def pdfNN_layer_generator( last_layer_nodes=last_layer_nodes, ) - # Apply NN layers for all replicas to a given input grid - def neural_network_replicas(x, postfix=""): + # The NN subtracted by NN(1), if applicable + def nn_subtracted(x): NNs_x = nn_replicas(x) if subtract_one: @@ -605,14 +605,14 @@ def neural_network_replicas(x, postfix=""): return NNs_x - def compute_unnormalized_pdf(x, postfix=""): + def compute_unnormalized_pdf(x): # Preprocess the input grid x_nn_input = extract_nn_input(x) x_processed = process_input(x_nn_input) x_original = extract_original(x) # Compute the neural network output - NNs_x = neural_network_replicas(x_processed, postfix=postfix) + NNs_x = nn_subtracted(x_processed) # Compute the preprocessing factor preprocessing_factors_x = compute_preprocessing_factor(x_original) @@ -632,7 +632,7 @@ def compute_unnormalized_pdf(x, postfix=""): PDFs_unnormalized = compute_unnormalized_pdf(pdf_input) if impose_sumrule: - PDFs_integration_grid = compute_unnormalized_pdf(integrator_input, postfix="_x_integ") + PDFs_integration_grid = compute_unnormalized_pdf(integrator_input) if photons: # add batch and flavor dimensions