-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathdemo_txt2img_xl.py
151 lines (126 loc) · 7.31 KB
/
demo_txt2img_xl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
from cuda import cudart
from stable_diffusion_pipeline import StableDiffusionPipeline
from utilities import PIPELINE_TYPE, TRT_LOGGER, add_arguments, process_pipeline_args
def parseArgs():
parser = argparse.ArgumentParser(description="Options for Stable Diffusion XL Txt2Img Demo", conflict_handler='resolve')
parser = add_arguments(parser)
parser.add_argument('--version', type=str, default="xl-1.0", choices=["xl-1.0", "xl-turbo"], help="Version of Stable Diffusion XL")
parser.add_argument('--height', type=int, default=1024, help="Height of image to generate (must be multiple of 8)")
parser.add_argument('--width', type=int, default=1024, help="Height of image to generate (must be multiple of 8)")
parser.add_argument('--num-warmup-runs', type=int, default=1, help="Number of warmup runs before benchmarking performance")
parser.add_argument('--guidance-scale', type=float, default=5.0, help="Value of classifier-free guidance scale (must be greater than 1)")
parser.add_argument('--enable-refiner', action='store_true', help="Enable SDXL-Refiner model")
parser.add_argument('--image-strength', type=float, default=0.3, help="Strength of transformation applied to input_image (must be between 0 and 1)")
parser.add_argument('--onnx-refiner-dir', default='onnx_xl_refiner', help="Directory for SDXL-Refiner ONNX models")
parser.add_argument('--engine-refiner-dir', default='engine_xl_refiner', help="Directory for SDXL-Refiner TensorRT engines")
return parser.parse_args()
class StableDiffusionXLPipeline(StableDiffusionPipeline):
def __init__(self, vae_scaling_factor=0.13025, enable_refiner=False, **kwargs):
self.enable_refiner = enable_refiner
self.nvtx_profile = kwargs['nvtx_profile']
self.base = StableDiffusionPipeline(
pipeline_type=PIPELINE_TYPE.XL_BASE,
vae_scaling_factor=vae_scaling_factor,
return_latents=self.enable_refiner,
**kwargs)
if self.enable_refiner:
self.refiner = StableDiffusionPipeline(
pipeline_type=PIPELINE_TYPE.XL_REFINER,
vae_scaling_factor=vae_scaling_factor,
return_latents=False,
**kwargs)
def loadEngines(self, framework_model_dir, onnx_dir, engine_dir, onnx_refiner_dir='onnx_xl_refiner', engine_refiner_dir='engine_xl_refiner', **kwargs):
self.base.loadEngines(engine_dir, framework_model_dir, onnx_dir, **kwargs)
if self.enable_refiner:
self.refiner.loadEngines(engine_refiner_dir, framework_model_dir, onnx_refiner_dir, **kwargs)
def activateEngines(self, shared_device_memory=None):
self.base.activateEngines(shared_device_memory)
if self.enable_refiner:
self.refiner.activateEngines(shared_device_memory)
def loadResources(self, image_height, image_width, batch_size, seed):
self.base.loadResources(image_height, image_width, batch_size, seed)
if self.enable_refiner:
# Use a different seed for refiner - we arbitrarily use base seed+1, if specified.
self.refiner.loadResources(image_height, image_width, batch_size, ((seed+1) if seed is not None else None))
def get_max_device_memory(self):
max_device_memory = self.base.calculateMaxDeviceMemory()
if self.enable_refiner:
max_device_memory = max(max_device_memory, self.refiner.calculateMaxDeviceMemory())
return max_device_memory
def run(self, prompt, negative_prompt, height, width, batch_size, batch_count, num_warmup_runs, use_cuda_graph, **kwargs_infer_refiner):
# Process prompt
if not isinstance(prompt, list):
raise ValueError(f"`prompt` must be of type `str` list, but is {type(prompt)}")
prompt = prompt * batch_size
if not isinstance(negative_prompt, list):
raise ValueError(f"`--negative-prompt` must be of type `str` list, but is {type(negative_prompt)}")
if len(negative_prompt) == 1:
negative_prompt = negative_prompt * batch_size
num_warmup_runs = max(1, num_warmup_runs) if use_cuda_graph else num_warmup_runs
if num_warmup_runs > 0:
print("[I] Warming up ..")
for _ in range(num_warmup_runs):
images, _ = self.base.infer(prompt, negative_prompt, height, width, warmup=True)
if args.enable_refiner:
images, _ = self.refiner.infer(prompt, negative_prompt, height, width, input_image=images, warmup=True, **kwargs_infer_refiner)
ret = []
for _ in range(batch_count):
print("[I] Running StableDiffusionXL pipeline")
if self.nvtx_profile:
cudart.cudaProfilerStart()
latents, time_base = self.base.infer(prompt, negative_prompt, height, width, warmup=False)
if self.enable_refiner:
images, time_refiner = self.refiner.infer(prompt, negative_prompt, height, width, input_image=latents, warmup=False, **kwargs_infer_refiner)
ret.append(images)
else:
ret.append(latents)
if self.nvtx_profile:
cudart.cudaProfilerStop()
if self.enable_refiner:
print('|-----------------|--------------|')
print('| {:^15} | {:>9.2f} ms |'.format('e2e', time_base + time_refiner))
print('|-----------------|--------------|')
return ret
def teardown(self):
self.base.teardown()
if self.enable_refiner:
self.refiner.teardown()
if __name__ == "__main__":
print("[I] Initializing TensorRT accelerated StableDiffusionXL txt2img pipeline")
args = parseArgs()
kwargs_init_pipeline, kwargs_load_engine, args_run_demo = process_pipeline_args(args)
# Initialize demo
demo = StableDiffusionXLPipeline(vae_scaling_factor=0.13025, enable_refiner=args.enable_refiner, **kwargs_init_pipeline)
# Load TensorRT engines and pytorch modules
kwargs_load_refiner = {'onnx_refiner_dir': args.onnx_refiner_dir, 'engine_refiner_dir': args.engine_refiner_dir} if args.enable_refiner else {}
demo.loadEngines(
args.framework_model_dir,
args.onnx_dir,
args.engine_dir,
**kwargs_load_refiner,
**kwargs_load_engine)
# Load resources
_, shared_device_memory = cudart.cudaMalloc(demo.get_max_device_memory())
demo.activateEngines(shared_device_memory)
demo.loadResources(args.height, args.width, args.batch_size, args.seed)
# Run inference
kwargs_infer_refiner = {'image_strength': args.image_strength} if args.enable_refiner else {}
demo.run(*args_run_demo, **kwargs_infer_refiner)
demo.teardown()