-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_llama_1b.sh
55 lines (51 loc) · 2.5 KB
/
pretrain_llama_1b.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#! /bin/bash
# Put your WANDB API key here to enable logging to wandb.
# export WANDB_API_KEY=''
# TPU specific flags to improve training throughput
export LIBTPU_INIT_ARGS='--xla_jf_spmd_threshold_for_windowed_einsum_mib=0 --xla_tpu_spmd_threshold_for_allgather_cse=10000 --xla_tpu_spmd_rewrite_einsum_with_reshape=true --xla_enable_async_all_gather=true --jax_enable_async_collective_offload=true --xla_tpu_enable_latency_hiding_scheduler=true TPU_MEGACORE=MEGACORE_DENSE'
python3 -m EasyLM.models.llama.llama_train \
--jax_distributed.initialize_jax_distributed=True \
--mesh_dim='-1,8,1' \
--dtype='bf16' \
--total_steps=900000 \
--eval_freq=50000 \
--log_freq=1000 \
--save_model_freq=2000 \
--save_milestone_freq=50000 \
--load_llama_config='1b' \
--update_llama_config='' \
--load_dataset_state='' \
--load_checkpoint='' \
--tokenizer.pretrained_model_name_or_path='mimir-project/tokenizer' \
--optimizer.type='lion' \
--optimizer.lion_optimizer.weight_decay=1.0 \
--optimizer.lion_optimizer.lr_schedule_type='warmup_constant' \
--optimizer.lion_optimizer.lr=1e-4 \
--optimizer.lion_optimizer.end_lr=1e-5 \
--optimizer.lion_optimizer.lr_warmup_steps=60000 \
--optimizer.lion_optimizer.lr_decay_steps=100000 \
--optimizer.lion_optimizer.bf16_momentum=True \
--train_dataset.type='huggingface' \
--train_dataset.text_processor.fields='text' \
--train_dataset.text_processor.add_eos_token=True \
--train_dataset.text_processor.add_bos_token=True \
--train_dataset.huggingface_dataset.path='/share/mimir-base' \
--train_dataset.huggingface_dataset.name='default' \
--train_dataset.huggingface_dataset.split='train' \
--train_dataset.huggingface_dataset.seq_length=2048 \
--train_dataset.huggingface_dataset.batch_size=256 \
--eval_dataset.type='huggingface' \
--eval_dataset.text_processor.fields='text' \
--eval_dataset.text_processor.add_eos_token=True \
--eval_dataset.text_processor.add_bos_token=True \
--eval_dataset.huggingface_dataset.path='/share/mimir-base' \
--eval_dataset.huggingface_dataset.split='validation' \
--eval_dataset.huggingface_dataset.seq_length=2048 \
--eval_dataset.huggingface_dataset.batch_size=128 \
--checkpointer.save_optimizer_state=True \
--logger.online=True \
--logger.prefix='EasyLM' \
--logger.project="llama-1b" \
--logger.output_dir="gs://mimir-train-us/llama-1b-checkpoint" \
--logger.wandb_dir="$HOME/wandb" \
|& tee $HOME/output.txt