-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFano.py
212 lines (175 loc) · 6.31 KB
/
Fano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from Encoding import Encoding, Probability
from typing import List, Union
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
class FanoGraph:
class Node:
def __init__(self) -> None:
self.probs: List[Probability] = []
self.parent: Union[FanoGraph.Node, None] = None
self.children: List[FanoGraph.Node] = []
self.code: List[str] = []
def value(self):
return np.round(sum(p.value() for p in self.probs), 4)
def is_single(self):
return len(self.probs) == 1
def is_last_leaf(self):
return len(self.children) == 0
def get_code(self):
return "".join(self.code)
def get_L(self):
return len(self.code)
def get_comm_name(self):
return '.'.join([i.name for i in self.probs])
def __str__(self):
new_line = '\n'
return f"{self.value()}\n{self.get_comm_name()}\n{self.get_code()}"
def __init__(self, probabilities) -> None:
self.probabilities = probabilities
self.head: Union[FanoGraph.Node, None] = None
self.base_layer: List[FanoGraph.Node] = []
self.leaves = []
self.L = None
self.H = None
self.build()
self.compute_code()
self.print_codes_and_Ls()
self.print_L()
self.print_H()
self.print_r()
self.draw_graph()
print()
def to_nodes(self, probabilities):
layer = []
n = FanoGraph.Node()
for p in probabilities:
n.probs.append(p)
layer.append(n)
return layer
def build(self):
self.base_layer.extend(self.to_nodes(self.probabilities))
layer = self.base_layer[:]
while len(layer):
new_layer = []
for n in layer:
g_node, l_node = self.split_node(n)
if g_node.is_single():
self.leaves.append(g_node)
else:
new_layer.append(g_node)
if l_node.is_single():
self.leaves.append(l_node)
else:
new_layer.append(l_node)
layer = new_layer
self.head = self.base_layer[0]
print()
def get_arr_val(self, arr):
return np.round(sum(p.value() for p in arr), 4)
def split_node(self, node: Node):
gt = []
lt = []
node.probs.sort(key=lambda p: p.value(), reverse=True)
last_gt = []
last_lt = []
for i in range(1, len(node.probs)):
f1 = node.probs[:i]
f2 = node.probs[i:]
if self.get_arr_val(f1) < self.get_arr_val(f2):
last_gt = f1[:]
last_lt = f2[:]
continue
else:
last_val_delta = abs(self.get_arr_val(last_gt) - self.get_arr_val(last_lt))
curr_val_delta = abs(self.get_arr_val(f1) - self.get_arr_val(f2))
if curr_val_delta < last_val_delta:
gt = f1
lt = f2
elif last_val_delta == 0:
gt = f1
lt = f2
else:
gt = last_gt
lt = last_lt
break
g_node = FanoGraph.Node()
g_node.probs = gt
g_node.parent = node
l_node = FanoGraph.Node()
l_node.probs = lt
l_node.parent = node
node.children = [g_node, l_node]
return (g_node, l_node)
def connect(self, node1, node2, g):
g.add_edge(node1, node2)
def dfs_connect(self, visitor, g):
def dfs_inner(node, v, parent, val):
v(node, parent, val)
if node.is_last_leaf():
return
else:
left = node.children[0]
right = node.children[1]
parent = node
dfs_inner(left, visitor, parent, g)
dfs_inner(right, visitor, parent, g)
left = self.head.children[0]
right = self.head.children[1]
parent = self.head
dfs_inner(left, visitor, parent, g)
dfs_inner(right, visitor, parent, g)
def add_code(self, node: Node, past: List[str], item: str):
node.code.extend(past)
node.code.append(item)
def dfs(self, visitor):
def dfs_inner(node, v, parent, val):
v(node, parent.code, val)
if node.is_last_leaf():
return
else:
left = node.children[0]
right = node.children[1]
parent = node
dfs_inner(left, visitor, parent, '0')
dfs_inner(right, visitor, parent, '1')
left = self.head.children[0]
right = self.head.children[1]
parent = self.head
dfs_inner(left, visitor, parent, '0')
dfs_inner(right, visitor, parent, '1')
def compute_code(self):
self.dfs(self.add_code)
def draw_graph(self):
plt.title("Fano")
G = nx.Graph()
self.dfs_connect(self.connect, G)
nx.draw(G, with_labels=True)
plt.show()
def print_codes_and_Ls(self):
for i, node in enumerate(self.leaves):
print(f"{node.get_comm_name():3} = {node.value():5} = {node.get_code():10} \t\t\tL{i} = {node.get_L()}")
def print_L(self):
components = []
results = []
for i in self.leaves:
components.append(f"{i.value()} * {i.get_L()}")
results.append(np.round(i.value() * i.get_L(), 4))
res = np.round(sum(results), 4)
self.L = res
print(f"L = {' + '.join(components)} = {' + '.join([str(i) for i in results])} = {res}")
def print_H(self):
components = []
results = []
for i in self.leaves:
components.append(f"{i.value()} * log2({i.value()})")
results.append(np.round(i.value() * np.log2(i.value()), 4))
res = np.round(-sum(results), 4)
self.H = res
print(f"H = -( {' + '.join(components)} ) = -( {' '.join([str(i) for i in results])} ) = {res}")
def print_r(self):
print(f"r = L - H = {self.L} - {self.H} = {np.round(self.L - self.H, 4)}")
if __name__ == '__main__':
e = Encoding("task3_huffman_fano\\input1.txt")
hg = FanoGraph(e.probabilities)
print()