-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHuffman.py
167 lines (138 loc) · 5.18 KB
/
Huffman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# from datetime import datetime
from typing import List, Union
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
from time import time
from Encoding import Probability, Encoding
# from networkx.drawing.nx_agraph import graphviz_layout
from TaskInpType import TInpType
class HuffGraph:
class Node:
def __init__(self):
self.prob: Union[Probability, None] = None
self.parent: Union[HuffGraph.Node, None] = None
self.children: List[HuffGraph.Node] = []
self.creation_time = time()
self.code: List[str] = []
def is_last_leaf(self):
return len(self.children) == 0
def value(self):
return self.prob.val
def get_code(self):
return "".join(self.code)
def get_L(self):
return len(self.code)
def get_creation_time(self):
return self.creation_time
def __str__(self):
new_line = '\n'
return f"{self.prob.value()}\n{self.prob.name + new_line if self.prob.name != '_' else ''}{self.get_code()}"
def __init__(self, probabilities):
self.probabilities = probabilities
self.head: Union[HuffGraph.Node, None] = None
self.base_layer: List[HuffGraph.Node] = []
self.L = None
self.H = None
self.build()
self.compute_code()
self.print_codes_and_Ls()
self.print_L()
self.print_H()
self.print_r()
self.draw_graph()
def build(self):
self.base_layer.extend(self.to_nodes(self.probabilities))
layer = self.base_layer[:]
while len(layer) > 1:
layer.sort(key=lambda node: (node.value(), -node.get_creation_time()), reverse=True)
to_merge = layer[-2:]
del layer[-2:]
new_node = HuffGraph.Node()
new_node.children = to_merge
new_prob = Probability("_", to_merge[0].prob.value() + to_merge[1].prob.value())
new_node.prob = new_prob
for n in to_merge:
n.parent = new_node
layer.append(new_node)
self.head = layer[0]
print()
def add_code(self, node: Node, past: List[str], item: str):
node.code.extend(past)
node.code.append(item)
def connect(self, node1, node2, g):
g.add_edge(node1, node2)
def dfs_connect(self, visitor, g):
def dfs_inner(node, v, parent, val):
v(node, parent, val)
if node.is_last_leaf():
return
else:
left = node.children[1]
right = node.children[0]
parent = node
dfs_inner(left, visitor, parent, g)
dfs_inner(right, visitor, parent, g)
left = self.head.children[1]
right = self.head.children[0]
parent = self.head
dfs_inner(left, visitor, parent, g)
dfs_inner(right, visitor, parent, g)
def dfs(self, visitor):
def dfs_inner(node, v, parent, val):
v(node, parent.code, val)
if node.is_last_leaf():
return
else:
left = node.children[0]
right = node.children[1]
parent = node
dfs_inner(left, visitor, parent, '1')
dfs_inner(right, visitor, parent, '0')
left = self.head.children[0]
right = self.head.children[1]
parent = self.head
dfs_inner(left, visitor, parent, '1')
dfs_inner(right, visitor, parent, '0')
def compute_code(self):
self.dfs(self.add_code)
def to_nodes(self, probabilities):
layer = []
for p in probabilities:
n = HuffGraph.Node()
n.prob = p
layer.append(n)
return layer
def draw_graph(self):
plt.title("Huffman")
G = nx.Graph()
self.dfs_connect(self.connect, G)
nx.draw(G, with_labels=True)
plt.show()
def print_codes_and_Ls(self):
for i, node in enumerate(self.base_layer):
print(f"{node.prob.name:3} = {node.prob.value():5} = {node.get_code():10} \t\t\tL{i} = {node.get_L()}")
def print_L(self):
components = []
results = []
for i in self.base_layer:
components.append(f"{i.prob.value()} * {i.get_L()}")
results.append(np.round(i.prob.value() * i.get_L(), 4))
res = np.round(sum(results), 4)
self.L = res
print(f"L = {' + '.join(components)} = {' + '.join([str(i) for i in results])} = {res}")
def print_H(self):
components = []
results = []
for i in self.base_layer:
components.append(f"{i.prob.value()} * log2({i.prob.value()})")
results.append(np.round(i.prob.value() * np.log2(i.prob.value()), 4))
res = np.round(-sum(results), 4)
self.H = res
print(f"H = -( {' + '.join(components)} ) = -( {' '.join([str(i) for i in results])} ) = {res}")
def print_r(self):
print(f"r = L - H = {self.L} - {self.H} = {np.round(self.L - self.H, 4)}")
if __name__ == '__main__':
e = Encoding("task3_huffman_fano\\input1.txt")
hg = HuffGraph(e.probabilities)
print()