-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgyro_calibration.py
144 lines (121 loc) · 4.8 KB
/
gyro_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import pandas as pd
import numpy as np
from data_utils import *
from config_parsers import update_sensor_config
GYRO_ID = 2
CALIBRATION_FILE = "Data/Calibration/Gyro_Calibration_20201026T1940.txt"
# NOISE_FILE = "Data/Calibration/Sensor_Noise_20201113T1842.txt"
NOISE_FILE = "Data/RAW_IMU_Log/test_20201104T191036_imu.txt"
SAVE_FILE = "Configs/sensor_config_20201029T1909.xml"
TEST_BED_SPEED = 45 # RPM
# Data Clip Points (ms)
bias_start = 1000
bias_end = 12000
x_start = 58000
x_end = 70000
y_start = 96000
y_end = 106000
z_start = 17000
z_end = 28000
# Noise clip times
# noise_start = 1e5
# noise_end = 5.5e6
noise_start = 100
noise_end = 400e3
def compute_bias(gyro_data):
x_bias = np.mean(gyro_data["x"])
y_bias = np.mean(gyro_data["y"])
z_bias = np.mean(gyro_data["z"])
return np.array([x_bias, y_bias, z_bias]).reshape(-1, 1)
def compute_scale_misalignment(measured_rates, biases):
"""
Models sensor as y = (I + T)x + b + v
T is the combined scaling and misalignment matrix
solve for P = (I + T)
"""
test_speed = TEST_BED_SPEED * np.pi / 30
true_rates = ([-test_speed, 0, 0],
[0, -test_speed, 0],
[0, 0, -test_speed])
coeffs = np.zeros((9, 9))
meas_vector = []
for orientation, meas_data in enumerate(measured_rates):
for axis in range(3):
avg_value = np.mean(meas_data.iloc[:, axis+1])
meas_vector.append(avg_value - biases[axis])
r_idx = orientation * 3 + axis
c_idx = axis * 3
coeffs[r_idx, c_idx:c_idx+3] = true_rates[orientation]
P = np.linalg.solve(coeffs, np.array(meas_vector))
return P.reshape(3, 3)
def compute_covariance(noise_data):
"""
Commpute the variance for each axis and form a
diagonal covariance matrix
"""
try:
noise_data = noise_data.to_numpy()
except AttributeError:
noise_data = np.array(noise_data)
variances = np.std(noise_data[:, 1:], axis=0) ** 2
covariance = np.diag(variances)
return covariance
def compute_bias_covariance(noise_data):
return compute_covariance(noise_data)
def gyroscope_calibration(visualize=False):
"""
Perform a gyro calibration using a single datafile
which contains 4 segments:
1) stationary data for computing biases
2), 3), 4) constant -ve rotation about x, y, z
"""
print("\nRunning Gyroscope Calibration")
calibration_dict = {}
# Load and visualize calibration data
gyro_dict = extract_single_imu_sensor_data(CALIBRATION_FILE, GYRO_ID, zero_times=True)
gyro_data = pd.DataFrame.from_dict(gyro_dict)
time_steps, rates = compute_logging_rates(gyro_dict)
print(f"Log size: {gyro_data.shape[0]}")
print(f"Time step (ms): min:{min(time_steps)}, max:{max(time_steps)}, avg:{np.mean(time_steps):.2f}")
print(f"Average logging rate (Hz): {1000*np.mean(rates):.2f}")
if visualize: visualize_3axis_timeseries(gyro_data, GYRO_ID)
# Calibration
bias_dataset = get_subsets_between_times(gyro_data, [(bias_start, bias_end)])
biases = compute_bias(bias_dataset)
clip_points = [(x_start, x_end), (y_start, y_end), (z_start, z_end)]
orientation_datasets = get_subsets_between_times(gyro_data, clip_points)
scaling = compute_scale_misalignment(orientation_datasets, biases)
scale_inv = np.linalg.inv(scaling)
calibration_dict["scale"] = scale_inv
calibration_dict["biases"] = biases
# Load and visualize noise data
noise_data = extract_single_imu_sensor_data(NOISE_FILE, GYRO_ID, zero_times=True)
noise_data = pd.DataFrame.from_dict(noise_data)
if visualize: visualize_3axis_timeseries(noise_data, GYRO_ID)
# Noise
noise_data = get_subsets_between_times(noise_data, [(noise_start, noise_end)])
covariance = compute_covariance(noise_data)
bias_covariance = compute_bias_covariance(noise_data)
calibration_dict["covariance"] = covariance
calibration_dict["bias_covariance"] = bias_covariance
# Results Visualization
corrected_data = batch_measurement_correction(gyro_data, biases, scale_inv)
corrected_orientation_sets = get_subsets_between_times(corrected_data, clip_points)
if visualize:
for idx in range(3):
raw = orientation_datasets[idx]
corrected = corrected_orientation_sets[idx]
visualize_3axis_timeseries(raw, GYRO_ID)
visualize_3axis_timeseries(corrected, GYRO_ID)
print(f"rotation rate: {np.mean(corrected.iloc[:, idx+1]) * 30 / np.pi:.2f} RPM")
print(f"covariance {covariance}")
# Saving
save_params = input("Save calibration params?: ")
if save_params.lower() in ("y","yes"):
update_sensor_config(SAVE_FILE, GYRO_ID, calibration_dict)
print("Params saved")
def main():
gyroscope_calibration()
if __name__ == "__main__":
main()