-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
86 lines (69 loc) · 2.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import hydra
import torch
import time
import datetime
import logging
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score
from dataset import MNISTDataset
from model import QCNN
from plotting import plot_history
from conf.structured_config import Config
@hydra.main(config_name="config", version_base=None)
def main(cfg: Config) -> None:
logging.basicConfig(level=logging.INFO)
train_dataloader = DataLoader(
dataset = MNISTDataset(
*cfg.data.values(),
train=True
),
batch_size=cfg.train.batch_size,
shuffle=True
)
test_dataloader = DataLoader(
dataset = MNISTDataset(
*cfg.data.values(),
train=False
),
batch_size=2*cfg.data.min_length,
)
losses, scores = [], []
model = QCNN(cfg)
opt = torch.optim.Adam(
model.parameters(),
lr=cfg.train.lr
)
scheduler = torch.optim.lr_scheduler.LinearLR(
opt,
start_factor=cfg.train.start_factor,
end_factor=cfg.train.end_factor,
total_iters=cfg.train.epoch_count
)
start = time.time()
for epoch in range(cfg.train.epoch_count):
# fit
epoch_history = []
for i, (x, y) in enumerate(train_dataloader):
opt.zero_grad()
loss = model(x, y)
loss.backward()
opt.step()
end = str(datetime.timedelta(seconds=time.time()-start))
epoch_history.append(loss[0])
scheduler.step()
loss = sum(epoch_history) / len(epoch_history)
# predict
x, y = next(iter(test_dataloader))
y_pred = model.predict(x)
score = accuracy_score(y, y_pred)
end = str(datetime.timedelta(seconds=time.time()-start))
losses.append(float(loss))
scores.append(score)
logging.info(
f"epoch: {epoch+1:2d} | loss: {loss:.3f} | "
f"accuracy: {score:.3f} | current time: {end:.7}"
)
plot_history(cfg.plot.path, losses, scores)
logging.info(f"History has been plotted to {cfg.plot.path}")
if __name__ == "__main__":
main()