-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEvaluation.py
213 lines (198 loc) · 8.45 KB
/
Evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import matplotlib.pyplot as plt
import pickle
import os
import structures as st
from Vector_model import Vector_model
from LSI_model import LSI_model
from Boolean_model import Boolean_model
def qrel_by_model(model, collection):
if model == 'vector' : m = Vector_model(collection)
elif model == 'LSI' : m = LSI_model(collection)
elif model == 'boolean' : m = Boolean_model(collection)
else :
print("Wrong Model")
return
m.collection.load_docs()
m.collection.load_queries()
model_rel = {k: [] for k in m.collection.queries_dict.keys()}
for q in model_rel:
docs_rel = m.query(m.collection.queries_dict[q].query)
model_rel[q] = [d[0] for d in docs_rel]
return model_rel
# ret = {}
# m = ['vector', 'boolean', 'LSI']
# c = ['cranfield', 'vaswani', 'vaswani_r', 'nfcorpus', 'nfcorpus_r']
# rel_path = os.path.join(os.path.dirname(__file__),'data')
# qrel_by_model(m[1],c[0])
# ret[(m[0],c[0])] = qrel_by_model(m[0],c[0]) # vector - cranfield
# ret[(m[0],c[1])] = qrel_by_model(m[0],c[1]) # vector - vaswani
# ret[(m[0],c[3])] = qrel_by_model(m[0],c[3]) # vector - nfcorpus
# f = open( os.path.join(rel_path, 'relevance_vector.bin','wb') )
# pickle.dump(ret,f)
# f.close()
# ret = {}
# ret[(m[1],c[0])] = qrel_by_model(m[1],c[0]) # boolean - cranfield
# ret[(m[1],c[1])] = qrel_by_model(m[1],c[1]) # boolean - vaswani
# ret[(m[1],c[3])] = qrel_by_model(m[1],c[3]) # boolean - nfcorpus
# f = open( os.path.join(rel_path, 'relevance_boolean.bin','wb') )
# pickle.dump(ret,f)
# f.close()
# ret = {}
# ret[(m[2],c[0])] = qrel_by_model(m[2],c[0]) # LSI - cranfield
# ret[(m[2],c[2])] = qrel_by_model(m[2],c[2]) # LSI - vaswani_r
# ret[(m[2],c[4])] = qrel_by_model(m[2],c[4]) # LSI - nfcorpus_r
# f = open( os.path.join(rel_path, 'relevance_LSI.bin','wb') )
# pickle.dump(ret,f)
# f.close()
def hits(qrels: list, retrieved: list):
""" Number of retrieved relevant documents.
qrels: list of relevant documents
retrieved: list of retrieved documents
"""
hits = 0
for i in range(len(retrieved)):
for k in range(len(qrels)):
if retrieved[i] == qrels[k]:
hits+=1
break #it won't match another one
return hits
def hit_rate(qrels: list, retrieved: list):
""" Fraction of queries for which at least one relevant document is retrieved.
qrels: list of relevant documents
retrieved: list of retrieved documents
"""
for i in range(len(retrieved)):
for k in range(len(qrels)):
if retrieved[i] == qrels[k]:
return 1
return 0
def precision(qrels: list, retrieved: list):
""" Proportion of the retrieved documents that are relevant.
qrels: list of relevant documents
retrieved: list of retrieved documents
Precision = r/n
r: number of retrieved relevant documents
n: number of retrieved documents
"""
if len(retrieved) == 0: return 0
return hits(qrels, retrieved) / len(retrieved)
def recall(qrels: list, retrieved: list):
""" Ratio between the retrieved documents that are relevant and the total number of relevant documents.
qrels: list of relevant documents
retrieved: list of retrieved documents
Recall = r/R
r: number of retrieved relevant documents
R: total number of relevant documents
"""
if len(qrels) == 0: return 0
return hits(qrels, retrieved) / len(qrels)
def f_metric(qrels: list, retrieved: list, beta = 1):
""" Weighted harmonic mean of Precision and Recall.
qrels: list of relevant documents
retrieved: list of retrieved documents
F = ((1+beta^2) * P * R ) / ( beta^2 * P + R )
beta: weight
P: precision
R: recall
"""
if beta <= 0: return None
precision_s = precision(qrels, retrieved)
recall_s = recall(qrels, retrieved)
if precision_s == 0 or recall_s == 0: return 0
return ((1 + beta ** 2) * precision_s * recall_s) / ((beta ** 2) * precision_s + recall_s)
def precision_ranked(qrels: list, retrieved: list):
""" Proportion of the retrieved documents that are relevant.
qrels: list of relevant documents
retrieved: list of retrieved documents
R-Precision = r/R
r: number of relevant documents among the top-R retrieved
R: total number of relevant documents
R-Precision is equal to recall at the R-th position
"""
R = min(len(qrels), len(retrieved))
hits_on_top_R = hits(qrels, retrieved[:R])
if len(qrels) == 0: return 0
return hits_on_top_R / len(qrels)
def fallout(qrels: list, retrieved: list, total_docs: int):
""" Proportion of non-relevant documents retrieved,
out of all non-relevant documents available
fallout = nr/nn
nr: number of non-relevant documents retrieved
nn: total of non-relevant documents
"""
non_hits = len(retrieved) - hits(qrels, retrieved)
non_rel_docs = total_docs - len(qrels)
if non_hits == 0 or non_rel_docs == 0: return 0
return non_hits / non_rel_docs
def evaluate(model: str, coll:str, F_beta: float):
path = os.path.join(os.path.dirname(__file__),'data')
if model == 'vector': path = os.path.join(path, 'relevance_vector.bin')
elif model == 'boolean': path = os.path.join(path, 'relevance_boolean.bin')
elif model == 'LSI': path = os.path.join(path, 'relevance_LSI.bin')
else:
print("Wrong Model")
return
collection = st.datasets[coll]
collection.load_queries()
file = open(path,'rb')
model_relevance = pickle.load(file)
file.close()
precision_l = []
recall_l = []
f_l = []
f1_l = []
precision_r_l = []
fallout_l = []
for q in model_relevance[(model, coll)]:
retrieved = model_relevance[(model, coll)] [q]
qrels = collection.queries_dict[q].docs_relevance
precision_l.append(round(precision(qrels, retrieved), 4))
recall_l.append(round(recall(qrels, retrieved), 4))
f_l.append(round(f_metric(qrels, retrieved, F_beta), 4))
f1_l.append(round(f_metric(qrels, retrieved, 1), 4))
precision_r_l.append(round(precision_ranked(qrels, retrieved), 4))
fallout_l.append(round(fallout(qrels, retrieved, collection.numb_docs), 4))
X = list(collection.queries_dict)
plot(X, precision_l, np.average(precision_l), model + '_' + coll + '_precision', 1, Ylabel='precision')
plot(X, recall_l, np.average(recall_l), model + '_' + coll + '_recall', 2, Ylabel='recall')
plot(X, f_l, np.average(f_l), model + '_' + coll + '_F', 3, Ylabel='f-metric')
plot(X, f1_l, np.average(f1_l), model + '_' + coll + '_F1', 4, Ylabel='f1-metric')
plot(X, fallout_l, np.average(fallout_l), model + '_' + coll + '_fallout', 5, Ylabel='fallout')
plot(X,precision_r_l,np.average(precision_r_l),model + '_' + coll + '_precision_r', 6, Ylabel='R-precision')
def plot(X:list, Y:list, avg: float, name:str, fig: int, Xlabel = 'queries', Ylabel=''):
path = os.path.join(os.path.dirname(__file__), 'evaluation')
path = os.path.join(path, name)
n = name.split('_')
plt.figure(fig)
plt.scatter(X, Y )
plt.xlabel(Xlabel)
if Ylabel == '': Ylabel = n[2]
plt.ylabel(Ylabel)
plt.title(n[0]+' - '+n[1]+' Average '+Ylabel+': '+str(round(avg,4)))
plt.savefig(path, format='png')
# plt.show()
# evaluate('vector', 'cranfield', 5)
# evaluate('vector', 'vaswani', 5)
# evaluate('vector', 'nfcorpus', 5)
# evaluate('LSI', 'cranfield', 5)
# evaluate('LSI', 'vaswani_r', 5)
# evaluate('LSI', 'nfcorpus_r', 5)
# evaluate('boolean', 'cranfield', 5)
# evaluate('boolean', 'vaswani', 5)
# evaluate('boolean', 'nfcorpus', 5)
# cran = st.Cranfield()
# cran.process_docs()
# print(cran.freq_matrix.shape, cran.freq_matrix.size) # (5510, 1400) 7,714,000
# vsw = st.Vaswani()
# vsw.process_docs()
# print(vsw.freq_matrix.shape, vsw.freq_matrix.size) # (10179, 11429) 116,335,791
# vsw_r = st.Vaswani(reduce=True)
# vsw_r.process_docs()
# print(vsw_r.freq_matrix.shape, vsw_r.freq_matrix.size) # (9296, 9000) 83,664,000
# nfc = st.Nfcorpus()
# nfc.process_docs()
# print(nfc.freq_matrix.shape, nfc.freq_matrix.size) # (20420, 5371) 109,675,820
# nfc_r = st.Nfcorpus(reduce=True)
# nfc_r.process_docs()
# print(nfc_r.freq_matrix.shape, nfc_r.freq_matrix.size) # (17354, 4000) 69,416,000