-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVector_model.py
165 lines (135 loc) · 6.13 KB
/
Vector_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import os
import time
import string
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
import psri.structures as st
class Vector_model():
""" Vector space model for ranked information retrieval """
stop_words = list(set(stopwords.words("english"))) # nltk stopwords
lemmatizer = WordNetLemmatizer() # nltk lemmatizer
lemmatizer.lemmatize('', pos ='v') # initialize the lemmatizer (because of the lazy load)
def __init__(self, collection= 'cranfield'):
self.start_time = time.time()
self.collection = st.datasets[collection]
self.collection.load_files()
if not self.collection.loaded_metadata:
self.collection.process_docs()
self.collection.load_files()
try:
self.load_tf_idf(self.collection.save_path)
except:
self.idf_list = self.idf()
self.tfXidf_2darray = self.Joint_tf_idf()
np.save(os.path.join(self.collection.save_path, 'idf_list'), self.idf_list)
def load_tf_idf(self, path):
idf_f = open(os.path.join(path, 'idf_list.npy'), 'r')
self.idf_list = np.load(os.path.join(path, 'idf_list.npy'))
idf_f.close()
self.tfXidf_2darray = self.Joint_tf_idf()
def idf(self):
"""
Calculates the inverse document frequency of every term.
idf[i] = log(total_docs / number of docs where is the term i)
"""
total_docs = len(self.collection.documents_list)
idf = []
for term in self.collection.terms_dict:
idf.append(np.log10(float(total_docs / len(self.collection.terms_dict[term]))))
return idf
def Joint_tf_idf(self):
"""
Calculates the TF*IDF of every term.
tf[i,d] = freq[i,d] / max freq[d]
tfxidf[i,d] = tf[i,d] * idf[i]
"""
max_freq = self.collection.freq_matrix.max(axis=0, keepdims=True)
tf_x_idf = np.ndarray(self.collection.freq_matrix.shape, dtype=float)
terms = self.collection.indexed_terms
t_dict = self.collection.terms_dict
# fill the non-zero positions
for i in range(len(terms)):
for k in range(len(t_dict[terms[i]])):
d_ind = t_dict[terms[i]] [k] - 1 # minus 1, because the document's id is 1-indexed
tf_i_d = self.collection.freq_matrix[i,d_ind] / max_freq[0,d_ind]
tf_x_idf[i,d_ind] = tf_i_d * self.idf_list[i]
return tf_x_idf
def query(self, query_text, ranking = 30):
"""
Query the indexed documents using a vector space model
query: valid expression to search for
returns: top-ranking relevant documents
"""
start_time = time.time()
# Tokenize query
query_tokens = self.tokenize_query(query_text)
# Convert the query to the vector space
query_vector = self.vectorize_query(query_tokens)
# Weight of terms in the query
query_weight = self.weight_query(query_vector)
# Evaluate query against already processed documents
ranked_docs = self.evaluate_query(query_weight)
# Return only non-0-relevance docs
i = 0
while list(ranked_docs.values())[i] > 0:
i+=1
if i >=ranking: break
if i < ranking: ranking = i
index_list = list(ranked_docs.keys())[0:ranking]
docs_to_print = self.collection.docs_ranking(ranking, index_list)
return docs_to_print
def tokenize_query(self, query):
"""
Preprocesses the query given as input.
Converts to lower case, removes the punctuations, splits on whitespaces and removes stopwords.
"""
text = query.lower()
# Remove numbers
text = text.translate(str.maketrans('', '', string.digits))
# remove punctuation
text = text.translate(str.maketrans(st.Collection.punctuations(), ' '*len(st.Collection.punctuations())))
# split on whitespaces to generate tokens
word_tokens = word_tokenize(text)
# remove stopwords function
filtered_text = [word for word in word_tokens if word not in Vector_model.stop_words]
# lemmatize string
lemmas = [Vector_model.lemmatizer.lemmatize(word, pos ='v') for word in filtered_text]
return lemmas
def vectorize_query(self, query_tokens):
vector = np.ndarray(shape=(len(self.collection.indexed_terms)), dtype=int)
for i in range(len(self.collection.indexed_terms)):
freq = query_tokens.count(self.collection.indexed_terms[i])
vector[i] = freq
return vector
def weight_query(self, query_freq_vector, softer=0.1):
weight = np.ndarray(shape=(len(self.collection.indexed_terms)), dtype=float)
max_freq = query_freq_vector.max()
if max_freq - 0 < 1e-10 :
return weight
for i in range((len(self.collection.indexed_terms))):
if query_freq_vector[i] == 0:
wiq = softer * self.idf_list[i]
else:
wiq = ( softer + (1 - softer) * (query_freq_vector[i] / max_freq) ) * self.idf_list[i]
weight[i] = wiq
return weight
def evaluate_query(self, query_weight_vector):
"""
Evaluates the query against the corpus
:param query_tokens: list of query tokens :param query_tokens: list of query tokens
:returns: list of matching documents
"""
doc_likehood = {}
q_norm = np.linalg.norm(query_weight_vector)
for k in range((len(self.collection.documents_list))):
dk_x_q = np.dot(self.tfXidf_2darray[:,k],query_weight_vector)
dk_norm = np.linalg.norm(self.tfXidf_2darray[:,k])
norm_prod = dk_norm * q_norm
if dk_x_q == 0 or norm_prod == 0:
doc_likehood[k+1] = 0
else:
doc_likehood[k+1] = dk_x_q / norm_prod
ranked_doc = dict(sorted(doc_likehood.items(), key=lambda item: item[1], reverse=True))
return ranked_doc