diff --git a/docs/aivm-supported-models.md b/docs/aivm-supported-models.md index f7fdca0..e11f9b0 100644 --- a/docs/aivm-supported-models.md +++ b/docs/aivm-supported-models.md @@ -3,6 +3,7 @@ AIVM currently supports the following pre-trained models for specific learning tasks. You can either utilize these existing models or use the [training scripts](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples) to produce your own custom-trained versions: ## BertTiny + - [SMS Spam Classification](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples/1-getting-started.ipynb) - Binary classification for detecting spam messages - Input: Text string @@ -19,6 +20,7 @@ AIVM currently supports the following pre-trained models for specific learning t - Output: Sentiment score (-1 to 1) for positive, neutral and negative ## LeNet5 + - [Handwritten Digit Recognition (MNIST)](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples/1-getting-started.ipynb) - Classification of handwritten digits - Input: 28x28 grayscale image @@ -32,4 +34,4 @@ AIVM currently supports the following pre-trained models for specific learning t ## Project Ideas - [Nillion AIVM Discord bot for message sentiment analysis](https://github.com/NillionNetwork/aivm-discord-bot) -- [Nillion AIVM Slack not for hotdog image detection](https://github.com/tom-todo-repo) \ No newline at end of file +- [Nillion AIVM Slack not for hotdog image detection](https://github.com/crypblizz8/hotdog_or_not_aivm) diff --git a/docs/aivm.md b/docs/aivm.md index 6177f8b..10a861b 100644 --- a/docs/aivm.md +++ b/docs/aivm.md @@ -10,38 +10,17 @@ AIVM currently supports the following pre-trained models for specific learning tasks. You can either utilize these existing models or use the [training scripts](https://github.com/NillionNetwork/nillion-aivm/examples) to produce your own custom-trained versions: -### BertTiny -- [SMS Spam Classification](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples/1-getting-started.ipynb) - - Binary classification for detecting spam messages - - Input: Text string - - Output: Binary classification (spam/not spam) -- [Movie Rating Sentiment Analysis](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples/3a-upload-your-bert-tiny-model.ipynb) - - [Training Script](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples/2a-fine-tuning-bert-tiny.ipynb) - - Sentiment analysis for movie reviews - - Input: Text string - - Output: Sentiment score (-1 to 1) for positive and negative -- [Tweet Sentiment Analysis](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples/3c-upload-your-bert-tiny-for-tweet-sentiment.ipynb) - - [Training Script](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples/2c-fine-tuning-bert-tiny-tweet-dataset.ipynb) - - Sentiment analysis for tweets in - - Input: Text string - - Output: Sentiment score (-1 to 1) for positive, neutral and negative - -### LeNet5 -- [Handwritten Digit Recognition (MNIST)](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples/1-getting-started.ipynb) - - Classification of handwritten digits - - Input: 28x28 grayscale image - - Output: Digit classification (0-9) -- [Cats vs Dogs Classification](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples/3b-upload-your-lenet5-model.ipynb) - - [Training Script](https://github.com/NillionNetwork/nillion-aivm/blob/main/examples/2b-fine-tuning-lenet5.ipynb) - - Binary image classification - - Input: 28x28 grayscale image - - Output: Binary classification (cat/dog) - - -## Project Ideas - -- [Nillion AIVM Discord bot for message sentiment analysis](https://github.com/NillionNetwork/aivm-discord-bot) -- [Nillion AIVM Slack not for hotdog image detection](https://github.com/tom-todo-repo) +- BertTiny + - SMS Spam Classification + - Movie Rating Sentiment Analysis + - Tweet Sentiment Analysis +- LeNet5 + - Handwritten Digit Recognition (MNIST) + - Cats vs Dogs Classification + +We also have real-life project examples using these models including a Discord Bot for sentiment analysis and hotdog image detection can be found. + +More information on the supported models and project ideas can be found [here](./aivm-supported-models.md) ## Installation