-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_analysis_supplementary_files.r
266 lines (212 loc) · 8.02 KB
/
data_analysis_supplementary_files.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#########################################################################
# Script for ML analysis on supplementary files 1,2 and 3
#########################################################################
### clear workspace
## Clear Variables
rm(list = ls())
## Clear console
cat("\014")
## Load libraries
library(readxl)
library(ggplot2)
library(grid)
library(gridExtra)
library(psych)
require(reshape2)
library(glmulti)
library(glmnet)
library(caret)
library(xlsx)
library(praznik)
library(factoextra)
library(Rtsne)
library(cluster)
library(gtools)
library(ggpubr)
library(randomForest)
library(Metrics)
#########################################################################
# Load processed dataset
folder<-'C:/Folder name/'
dev_data<-readRDS(file = paste0(folder,"sup1_dev_data.Rda"))
dev_train<- dev_data$train
dev_train$C_type<-NULL
dev_train$Conc<-NULL
dev_train<-na.omit(dev_train)
# NOTE: for supplementary files 2 and 3
# dev_data<-readRDS(file = paste0(folder,"processed_data.Rda"))
# dev_train<- dev_data['sup2_DNA'] # Note for viability use 'sup2_via'
########################################################################
# Generate MRMR rankings
# Convert continuous variables to quantiles
for (col in colnames(dev_train))
{ if (col=='DNA_damage' | col=='Viability')
{
dev_train[[col]]<-quantcut(dev_train[[col]], q=4,na.rm=TRUE)
dev_train[[col]]<- factor(dev_train[[col]])
}
else if (col=='Z_average_CCM')
{
dev_train[[col]]<-quantcut(dev_train[[col]], q=2,na.rm=TRUE)
dev_train[[col]]<- factor(dev_train[[col]])
}
else {
dev_train[[col]]<- factor(dev_train[[col]])
}
}
#Select desired response: Viability or DNA_damage
resp = 'Viability'
if (resp=='DNA_damage')
{ dev_train$Viability<-NULL} else
{dev_train$DNA_damage<-NULL }
# Compute MRMR rankings
x<-dev_train[, -which(names(dev_train) == resp)]
y<-dev_train[,c(resp)]
mrmr<- MRMR(x, y[[resp]], k = ncol(dev_train)-1, threads = 0)
param_order_list<-names(mrmr$selection)
#Prepare MRMR plot
dfPlot<-data.frame(Parameter=param_order_list, Score=mrmr$score)
rownames(dfPlot) <- c()
dfPlot$Parameter <- factor(dfPlot$Parameter)
# MRMR plot
N=nrow(x)+1
title<-paste0(paste0('Feature importance for ', resp,'(N=',as.character(N),')'))
p<-ggplot(dfPlot, aes(x = Parameter, y = Score, group=1)) +
geom_line()+geom_point()+theme_bw()+ coord_flip()+
scale_x_discrete(limits= rev(param_order_list))+
xlab("")+
theme_bw()+
theme(axis.text.y =element_text(face=c('bold'),size=11,angle = 0))+
ylab("MRMR score")+
geom_hline(yintercept = 0, colour="black",linetype = "dashed")+
scale_y_continuous(breaks = round(seq(min(dfPlot$Score), max(dfPlot$Score)+0.1, by = 0.1),1)) +
ggtitle(title)
p
#########################################################################
# ML modelling
# Select desired response: 'DNA_damage' or 'Viability'
resp<-'DNA_damage'
dev_train<- dev_data$train
# NOTE: test set was only created for supplemtary file 1
# for files 2 and 3, test set is ignored as results are reported on
# the entire datset. We use one case here for code generalizability
if("test" %in% colnames(dev_data))
{dev_valid<-dev_data$valid} else
{dev_valid<- dev_train[1,]}
# Stepwise modelling, define sequence of parameter insertion
# starting with C_type and Conc as default parameters
param_order_list_orig<-param_order_list
param_order_list<-append(c('C_type','Conc'), param_order_list)
rsq <- function (x, y) cor(x, y) ^ 2
# Pre-porcess response data by dividing by 100
train<- dev_data$train
valid<-dev_data$test
train[[resp]]<-train[[resp]]/100
valid[[resp]]<-valid[[resp]]/100
# Define output table
dfModResults<-data.frame(matrix(ncol = 9))
colnames(dfModResults)<-c('Response', 'Model' ,'Inputs', 'Train_R2','Train_RMSE' ,'Train_MAE', 'Valid_R2', 'Valid_MAE','Valid_RMSE')
# Define type of modelling: Linear Regression (LR) and Random Forests (RF)
models<-c('LR', 'RF')
# Define max no features to be added in stepwise modelling
n_feats=5
# Loop and generate results
for (modeltyp in models)
{
for (i in 2:n_feats)
{
params<-param_order_list[1:i]
# prep train and valid sets
dfTrain<-na.omit(train[,append(params, resp)])
dfValid<-na.omit(valid[,append(params, resp)])
# preprocess and fit model
if (modeltyp=='LR')
{ nums <- unlist(lapply(dfTrain, is.numeric))
nums[length(nums)]<-FALSE
pp<-preProcess(dfTrain[,nums], method = c("center", "scale"))
dfTrain[,nums]<-predict(pp,dfTrain[,nums])
dfValid[,nums]<-predict(pp,dfValid[,nums])
model<-lm(paste(resp,"~ ."), data=dfTrain)
} else {
x_train<-dfTrain[,-which(names(dfTrain)==resp)]
y_train<-dfTrain[[resp]]
model<-randomForest(x=x_train, y=y_train,ntree=100)
}
#Make model preds
pred_train<-predict(model, newdata =dfTrain[,-which(names(dfTrain)==resp)])
pred_valid<-predict(model, newdata =dfValid[,-which(names(dfValid)==resp)])
# Evaluate preds
train_r2<-rsq(pred_train,dfTrain[[resp]] )
train_MAE<-mae(pred_train,dfTrain[[resp]])
train_rmse<-rmse(pred_train,dfTrain[[resp]])
valid_r2<-rsq(pred_valid,dfValid[[resp]] )
valid_MAE<-mae(pred_valid,dfValid[[resp]])
valid_rmse<-rmse(pred_valid,dfValid[[resp]])
#valid_se <- sd(abs(pred_valid - dfValid[[resp]]))/sqrt(nrow(dfValid))
#Update results
newRow<- data.frame(Response = resp,
Model = modeltyp,
Inputs = paste(params,collapse ='+'),
Train_R2 = train_r2,
Train_MAE = train_MAE,
Train_RMSE=train_rmse,
Valid_R2 = valid_r2,
Valid_MAE = valid_MAE,
Valid_RMSE = valid_rmse)
dfModResults<-rbind(dfModResults, newRow)
}
}
# Final results table
dfModResults<-dfModResults[2:nrow(dfModResults),]
#########################################################################
# Y randomnization test of final model in supplementary file 1
# Select desired response: 'DNA_damage' or 'Viability'
resp<-'DNA_damage'
if (resp=='DNA_damage')
{
req_cols<-c('C_type', 'Conc','Aspect_ratio')
} else
{req_cols<-c('C_type', 'Conc','Zeta_po')}
# Reload dataset
folder<-'C:/folder name/'
dev_data<-readRDS(file = paste0(folder,"sup1_dev_data.Rda"))
train<- dev_data$train
valid<-dev_data$test
train[[resp]]<-train[[resp]]/100
valid[[resp]]<-valid[[resp]]/100
rsq <- function (x, y) cor(x, y) ^ 2
# Orininal train
dfTrain<-na.omit(train[,append(params, resp)])
dfValid<-na.omit(valid[,append(params, resp)])
x_train<-dfTrain[,-which(names(dfTrain)==resp)]
y_train<-dfTrain[[resp]]
model<-randomForest(x=x_train, y=y_train,ntree=100)
#Make model predictions
pred_train<-predict(model, newdata =dfTrain[,-which(names(dfTrain)==resp)])
pred_valid<-predict(model, newdata =dfValid[,-which(names(dfValid)==resp)])
train_r2_orig<-rsq(pred_train,dfTrain[[resp]] )
valid_r2_orig<-rsq(pred_valid,dfValid[[resp]] )
# define k randomnizations
k=100
train_r2_list<-c()
valid_r2_list<-c()
for (i in 1:k)
{ # randomnize response
dfTrain<-na.omit(train[,append(params, resp)])
dfValid<-na.omit(valid[,append(params, resp)])
dfTrain[[resp]]<-sample(dfTrain[[resp]])
dfValid[[resp]]<-sample(dfValid[[resp]])
x_train_orig<-dfTrain[,-which(names(dfTrain)==resp)]
y_train<-dfTrain[[resp]]
model<-randomForest(x=x_train, y=y_train,ntree=100)
#Make model predictions randomnized response
pred_train<-predict(model, newdata =dfTrain[,-which(names(dfTrain)==resp)])
pred_valid<-predict(model, newdata =dfValid[,-which(names(dfValid)==resp)])
train_r2<-rsq(pred_train,dfTrain[[resp]] )
valid_r2<-rsq(pred_valid,dfValid[[resp]] )
train_r2_list<-append(train_r2_list,train_r2)
valid_r2_list<-append(valid_r2_list,valid_r2)
}
# Analyze results
describe(train_r2_list)
describe(valid_r2_list)