-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_and_track_async.py
65 lines (52 loc) · 1.77 KB
/
detect_and_track_async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import sys
import time
from multiprocessing import Process, Queue
import cv2
from tracking.DeepSORT import Tracker, Detection
from detection.wrapper import VehicleDetector
def detect(detector, frame_batch):
global detections_queue
start = time.time()
detections = detector.detect_multiple(frame_batch)
# print("detection time:", time.time() - start)
for detection_per_frame in detections:
detection_per_frame = [Detection(det) for det in detection_per_frame]
detections_queue.put(detection_per_frame)
# print("new batch processed")
def track():
global detections_queue, tracker
while True:
if not detections_queue.empty():
# print("Update tracking. Queue size:", detections_queue.qsize())
detection_per_frame = detections_queue.get()
if detection_per_frame:
tracker.update(detection_per_frame, visual_tracking=False, verbose=False)
else:
break
if __name__ == '__main__':
detector = VehicleDetector(weights="detection/yolov5/weights/best_yolov5l.pt", device="cuda:0")
tracker = Tracker(max_age=5)
detections_queue = Queue()
test_video = sys.argv[1]
vs = cv2.VideoCapture(test_video)
frame_count = 0
total = 1000
batch_size = 14
frame_batch = []
track_p = Process(target=track)
track_p.start()
start = time.time()
while frame_count < total:
ret, frame = vs.read()
if ret:
frame_count += 1
frame_batch.append(frame)
if len(frame_batch) == batch_size:
detect(detector, frame_batch)
frame_batch = []
else:
break
detections_queue.put(False)
vs.release()
track_p.join()
print(time.time() - start)