Skip to content

Latest commit

 

History

History
287 lines (203 loc) · 5.92 KB

whitepaper.md

File metadata and controls

287 lines (203 loc) · 5.92 KB
icon
road

Solana Oasis: Whitepaper

Version 1.0.0

Abstract

Solana Oasis introduces a novel Layer 2 scaling solution for Solana that specializes in AI computation offloading while maintaining security and decentralization. By combining optimistic rollups with a distributed AI computation layer, we enable scalable, verifiable AI operations that can be anchored to Solana's high-performance L1.

1. Introduction

1.1 Background

The increasing demand for AI-powered blockchain applications has created a need for scalable, decentralized computation solutions. While Solana provides high throughput for traditional transactions, AI computations require specialized infrastructure and significant resources.

1.2 Problem Statement

  • Heavy AI computations are incompatible with direct on-chain execution
  • Need for verifiable AI results in a trustless manner
  • Requirement for low-latency AI operations with blockchain integration
  • Data availability challenges for large AI models and datasets

2. Technical Architecture

2.1 Layer 2 Design

Solana Oasis implements a hybrid architecture:

2.1.1 Optimistic Rollup Core

  • Batch transactions and state updates
  • 7-day challenge period for fraud proofs
  • State roots posted to Solana L1
  • Efficient compression of transaction data

2.1.2 AI Computation Layer

  • Distributed network of AI computation nodes
  • Model registry and versioning system
  • Selective ZK-proof generation for critical computations
  • IPFS/Arweave integration for model and data storage

2.2 Consensus Mechanism

2.2.1 Hybrid Consensus

pub struct ConsensusConfig {
    // Minimum stake required for AI computation nodes
    min_stake: u64,
    // Required computation power (TFLOPS)
    min_compute_power: u32,
    // Maximum time for computation verification
    max_verification_time: u32,
    // Challenge period in slots
    challenge_period_slots: u64,
}

2.2.2 Proof of Computation

  • Hardware attestation for AI nodes
  • Performance benchmarking
  • Resource monitoring and reporting

2.3 Bridge Protocol

2.3.1 Asset Bridge

pub trait BridgeProtocol {
    fn deposit(
        &mut self,
        amount: u64,
        token: TokenAccount,
        destination: L2Address,
    ) -> Result<TxSignature>;
    
    fn withdraw(
        &mut self,
        amount: u64,
        proof: WithdrawalProof,
        destination: SolanaAddress,
    ) -> Result<TxSignature>;
}

2.3.2 State Synchronization

  • Merkle tree state commitments
  • Fraud proof verification
  • Emergency exit mechanism

3. AI Integration

3.1 Supported AI Operations

3.1.1 Large Language Models

class LLMInterface:
    def inference(
        self,
        model_id: str,
        input_text: str,
        params: Dict[str, Any]
    ) -> Tuple[str, Proof]:
        """
        Execute LLM inference with proof generation
        """
        pass

3.1.2 Data Analysis

  • Real-time market data processing
  • On-chain data analytics
  • Pattern recognition and prediction

3.2 Verification System

3.2.1 ZK-Proof Generation

pub struct AIComputationProof {
    // Input hash
    input_hash: Hash,
    // Output hash
    output_hash: Hash,
    // ZK proof for computation correctness
    zk_proof: Vec<u8>,
    // Computation metadata
    metadata: ComputationMetadata,
}

4. Smart Contract Architecture

4.1 Core Contracts

4.1.1 State Manager

#[program]
pub mod state_manager {
    use super::*;
    
    pub fn update_state(
        ctx: Context<UpdateState>,
        new_state_root: [u8; 32],
        proof: StateUpdateProof,
    ) -> Result<()> {
        // Verify and update state
    }
}

4.1.2 Bridge Contracts

  • Asset locking and unlocking
  • Cross-layer message passing
  • Emergency procedures

4.2 Governance

4.2.1 Upgrade System

  • Protocol parameter updates
  • Model registry management
  • Security patches

5. Developer Integration

5.1 SDK Components

interface OasisSDK {
  // Connect to L2
  connect(): Promise<Connection>;
  
  // Submit AI computation request
  submitComputation(params: ComputeParams): Promise<ComputeResult>;
  
  // Verify computation proof
  verifyProof(proof: Proof): Promise<boolean>;
}

5.2 API Endpoints

  • REST API for data queries
  • WebSocket for real-time updates
  • RPC for blockchain interaction

6. Security Considerations

6.1 Threat Model

  • Malicious AI nodes
  • Bridge attacks
  • State fraud attempts
  • Model tampering

6.2 Mitigation Strategies

  • Economic incentives
  • Slashing conditions
  • Multi-signature governance
  • Formal verification

7. Performance Metrics

7.1 Scalability

  • Up to 10,000 TPS for L2 transactions
  • Sub-second finality for most operations
  • Parallel AI computation support

7.2 Latency

  • Average inference time: 100-500ms
  • State update confirmation: 2-5 seconds
  • Challenge period: 7 days

8. Implementation Timeline

Phase 1: Core Infrastructure (Months 1-3)

  • L2 consensus mechanism
  • Basic bridge functionality
  • Initial node implementation

Phase 2: AI Integration (Months 4-6)

  • LLM integration
  • Proof generation system
  • Model registry

Phase 3: Developer Tools (Months 7-9)

  • SDK development
  • Documentation
  • Example applications

Phase 4: Security & Optimization (Months 10-12)

  • Security audits
  • Performance optimization
  • Mainnet preparation

9. Future Directions

9.1 Research Areas

  • Advanced ZK-proof systems
  • Novel AI verification methods
  • Cross-chain interoperability

9.2 Planned Features

  • Additional AI model support
  • Enhanced privacy features
  • Governance token implementation

References

  1. Solana Documentation
  2. Optimistic Rollup Papers
  3. ZK-Proof Systems
  4. AI/ML Framework Documentation

Appendix

A. Technical Specifications

  • Network requirements
  • Hardware specifications
  • Software dependencies

B. API Documentation

  • Endpoint descriptions
  • Authentication methods
  • Rate limiting