-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnotes.tex
773 lines (641 loc) · 25 KB
/
notes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[margin=1in]{geometry}
\usepackage{palatino}
\usepackage{amsthm,amsmath,amssymb}
\usepackage{xcolor}
\usepackage[utf8]{inputenc}
\usepackage[colorlinks=true,urlcolor=blue]{hyperref}
\usepackage{listings}
\newcommand{\task}{\par\noindent\emph{Task:}\ }
\definecolor{darkblue}{rgb}{0,0,0.5}
\definecolor{lightgray}{gray}{0.75}
\lstset{basicstyle=\ttfamily\small, numbers=left,
xleftmargin=3em,extendedchars=true,
numberstyle=\tiny\color{lightgray}, keywordstyle=\color{darkblue}, morekeywords={and,
as, begin, check, do, done, downto, else, end, effect, external, finally,
for, fun, function, handle, handler, if, in, match, let, new, of, operation,
perform, rec, val, while, to, type, then, with},
literate=%
{→}{{$\rightarrow$}}1%
{×}{{$\times$}}1%
{←}{{$\leftarrow$}}1%
{↦}{{$\mapsto$}}1%
{↝}{{$\leadsto$}}1%
{…}{{$\ldots$}}1%
{⇒}{{$\Rightarrow$}}1%
{∈}{{$\in$}}1%
{≡}{{$\equiv$}}1%
{λ}{{$\lambda$}}1%
{⊢}{{$\vdash$}}1%
{κ}{{$\kappa$}}1%
{Σ}{{$\Sigma$}}1%
{Δ}{{$\Delta$}}1%
{Γ}{{$\Gamma$}}1%
{Θ}{{$\Theta$}}1%
{₀}{{${}_0$}}1%
{₁}{{${}_1$}}1%
{₂}{{${}_2$}}1%
{ᵢ}{{${}_\mathtt{i}$}}1%
{ⱼ}{{${}_\mathtt{j}$}}1%
}
{\theoremstyle{definition}
\newtheorem{problem}{Problem}[section]}
\begin{document}
\title{Algebraic effects and handlers\\(OPLSS 2018 lecture notes)}
\author{Andrej Bauer\\University of Ljubljana}
\date{July 2018}
\maketitle
These are the notes and materials for the lectures on algebraic effects and
handlers at the
\href{https://www.cs.uoregon.edu/research/summerschool/summer18/index.php}{Oregon
programming languages summer school 2018 (OPLSS)}. The notes were originally
written in Markdown and converted to {\LaTeX} semi-automatically, please excuse
strange formatting. You can find all the resources at
\href{https://github.com/OPLSS/introduction-to-algebraic-effects-and-handlers}{the
accompanying GitHub repository}.
The lectures were recorded on video that are available at the summer school web
site.
\hypertarget{general-resources-reading-material}{%
\subsubsection*{General resources \& reading
material}\label{general-resources-reading-material}}
\begin{itemize}
\item
\href{https://github.com/yallop/effects-bibliography}{Effects
bibliography}
\item
\href{https://github.com/effect-handlers/effects-rosetta-stone}{Effects
Rosetta Stone}
\item
\href{http://www.eff-lang.org}{Programming language Eff}
\end{itemize}
\hypertarget{what-is-algebraic-about-algebraic-effects-and-handlers}{%
\section{What is algebraic about algebraic effects and
handlers?}\label{what-is-algebraic-about-algebraic-effects-and-handlers}}
The purpose of the first two lectures is to review algebraic theories and
related concepts, and connect them with computational effects. We shall start on
the mathematical side of things and gradually derive from it a programming
language.
\hypertarget{outline}{%
\subsubsection*{Outline}\label{outline}}
Pretty much everything that will be said in the first two lectures is written
up in \href{https://arxiv.org/abs/1807.05923}{``What is algebraic about
algebraic effects and handlers?''}, which still a bit rough around the
edges, so if you see a typo please
\href{https://github.com/andrejbauer/what-is-algebraic-about-algebraic-effects}{let
me know}.
Contents of the first two lectures:
%
\begin{itemize}
\item
signatures, terms, and algebraic theories
\item
models of an algebraic theory
\item
free models of an algebraic theory
\item
generalization to parameterized operations with arbitrary arities
\item
sequencing and generic operations
\item
handlers
\item
comodels and tensoring of comodels and models
\end{itemize}
\hypertarget{problems}{%
\subsection{Problems}\label{problems}}
Each section contains a list of problems, which are ordered roughly in the order
of difficulty, either in terms of trickiness, the amount of work, or
prerequisites. I recommend that you discuss the problems in groups, and pick
whichever problems you find interesting.
\begin{problem}[The theory of an associative unital operation]
Consider the theory $T$ of an associative operation with a unit.
It has a constant $\epsilon$ and a binary operation $\cdot$
satisfying equations
%
\begin{align*}
(x \cdot y) \cdot z &= x \cdot (y \cdot z) \\
\epsilon \cdot x &= x \\
x \cdot \epsilon &= x
\end{align*}
%
Give a useful description of the free model of $T$ generated by a
set $X$. You can either guess an explicit construction of free
models and show that it has the required universal property, or you can
analyze the free model construction (equivalence classes of well-founded
trees) and provide a simple description of it.
\end{problem}
\begin{problem}[The theory of apocalypse]
We formulate an algebraic theory $\mathsf{Time}$ in it is possible to
explicitly record passage of time. The theory has a single unary
operation $\mathsf{tick}$ and no equations. Each application of
$\mathsf{tick}$ records the passage of one time step.
\task Give a useful description of the free model of the
theory, generated by a set $X$.
\task Let a given fixed natural number $n$ be given.
Describe a theory $\mathsf{Apocalypse}$ which extends the theory
$\mathsf{Time}$ so that a computation crashes (aborts, necessarily
terminates) if it performs more than $n$ of ticks. Give a useful
description of its free models.
Advice: do \emph{not} concern yourself with any sort of operational
semantics which somehow ``aborts'' after $n$ ticks. Instead, use
equations and postulate that certain computations are equal to an
aborted one.
\end{problem}
\begin{problem}[The theory of partial maps]
The models of the empty theory are precisely sets and functions. Is
there a theory whose models form (a category equivalent to) the category
of sets and \emph{partial} functions?
Recall that a partial function $f : A \hookrightarrow B$ is an ordinary
function $f : S \to B$ defined on a subset $S \subseteq A$.
(How do we define composition of partial functions?)
\end{problem}
\begin{problem}[Models in the category of models]
In \href{https://arxiv.org/abs/1807.05923}{Example 1.27 of the reading
material} it is calculated that a model of the theory $\mathsf{Group}$ in
the category $\mathsf{Mod}(\textsf{Group})$ is an abelian group. We may generalize
this idea and ask about models of theory $T_1$ in the category of
models $\mathsf{Mod}(T_2)$ of theory $T_2$.
The \textbf{tensor product $T_1 \otimes T_2$} of algebraic theories
$T_1$ and $T_2$ is a theory such that the category of models
of $T_1$ in the category $\mathsf{Mod}(T_2)$ is equivalent to the
category of models of $T_1 \otimes T_2$.
Hint: start by outlining what data is needed to have a $T_1$-model
in $\mathsf{Mod}(T_2)$ is, and pay attention to the fact that the
operations of $T_1$ must be interpreted as
$T_2$-homomorphisms. That will tell you what the ingredients of
$T_1 \otimes T_2$ should be.
\end{problem}
\subsubsection{Problem: Morita equivalence}
It may happen that two theories $T_1$ and $T_2$ have
equivalent categories of models, i.e.,
%
\begin{equation*}
\mathsf{Mod}(T_1) \simeq \mathsf{Mod}(T_2)
\end{equation*}
%
In such a case we say that $T_1$ and $T_2$ are
\textbf{Morita equivalent}.
Let $T$ be an algebraic theory and $t$ a term in context
$x_1, \ldots, x_i$. Define a \textbf{definitional extension
$T + (\mathsf{op} {{:}{=}} t)$} to be the theory $T$ extended with an
additional operation $\mathsf{op}$ and equation
%
\begin{equation*}
x_1, \ldots, x_i \mid \mathsf{op}(x_1, \ldots, x_i) = t
\end{equation*}
%
We say that $\mathsf{op}$ is a \textbf{defined operation}.
%
\task Confirm the intuitive feeling that
$T + (\mathsf{op} {{:}{=}} t)$ by proving that $T$ and
$T + (\mathsf{op} {{:}{=}} t)$ are Morita equivalent.
\task Formulate the idea of a definitional extension so that
we allow an arbitrary set of defined operations, and show that we still
have Morita equivalence.
\begin{problem}[The theory of a given set]
Given any set $A$, define the \textbf{theory $T(A)$ of the set $A$} as follows:
%
\begin{itemize}
\item
for every $n$ and every map $f : A^n \to A$,
$\mathsf{op}(f)$ is an $n$-ary operation
\item
for all $f : A^i \to A$, $g : A^j \to A$ and
$h_1, \ldots, h_i : A^j \to A$, if
%
\begin{equation*}
f \circ (h_1, \ldots, h_i) = g
\end{equation*}
%
then we have an equation
%
\begin{equation*}
x_1, \ldots, x_j \mid \mathsf{op}(f)(\mathsf{op}(h_1)(x_1,\ldots,x_j), \ldots, h_i(x_1,\ldots,x_j)) = g(x_1, \ldots, x_j)
\end{equation*}
\end{itemize}
\task Is $T(\{0,1\})$ Morita equivalent to another, well-known algebraic theory?
\end{problem}
\begin{problem}[A comodel for non-determinism]
In \href{https://arxiv.org/abs/1807.05923}{Example 4.6 of the reading
material} it is shown that there is no comodel of non-determinism in the
category of sets. Can you suggest a category in which we get a reasonable
comodel of non-determinism?
\end{problem}
\begin{problem}[Formalization of algebraic theories]
If you prefer avoiding doing Real Math, you can formalize algebraic
theories and their comodels in your favorite proof assistant. A possible
starting point is
\href{https://gist.github.com/andrejbauer/3cc438ab38646516e5e9278fdb22022c}{this
gist}, and a good goal is the construction of the free model of a theory
generated by a set (or a type).
Because the free model requires quotienting, you should think ahead on
how you are going to do that. Some possibilities are:
%
\begin{itemize}
\item
use homotopy type theory and make sure that the types involved are
h-Sets
\item
use setoids
\item
suggest your own solution
\end{itemize}
%
It may be wiser to first show as a warm-up exercise that theories
without equations have initial models, as that only requires the
construction of well-founded trees (which are inductive types).
\end{problem}
\section{Designing a programming language}
Having worked out algebraic theories in previous lectures, let us turn the
equational theories into a small programming language.
What we have to do:
%
\begin{enumerate}
\item Change mathematical terminology to one that is familiar to programmers.
\item Reuse existing concepts (generators, operations, trees) to set up the overall
structure of the language.
\item Add missing features, such as primitive types and recursion, and generally
rearrange things a bit to make everything look nicer.
\item Provide operational semantics.
\item Provide typing rules.
\end{enumerate}
\subsection{Reading material}
There are many possible ways and choices of designing a programming language
around algebraic operations and handlers, but we shall mostly rely on Matija
Pretnar's tutorial \href{http://www.eff-lang.org/handlers-tutorial.pdf}{An
Introduction to Algebraic Effects and Handlers. Invited tutorial paper}. A
more advanced treatment is available in
\href{https://arxiv.org/abs/1306.6316}{An effect system for algebraic effects
and handlers}.
\subsection{Change of terminology}
\begin{itemize}
\item The elements of $\mathsf{Free}_\Sigma(V)$ are are \textbf{computations} (instead of trees).
\item The elements of $V$ are \textbf{values} (instead of generators).
\item We speak of \textbf{value types} (instead of sets of generators).
\item We speak of \textbf{computation type} (instead of free models).
\end{itemize}
Henceforth we ignore equations.
\subsection{Abstract syntax}
We add only one primitive type, namely $\mathsf{bool}$. Other constructs
(integers, products, sums) are left as exercises.
\noindent
Value:
%
\begin{lstlisting}
v ::= x (variable)
| false (boolean constants)
| true
| h (handler)
| λ x . c (function)
\end{lstlisting}
%
Handler:
%
\begin{lstlisting}
h ::= handler { return x ↦ c_ret, ... opᵢ(x, κ) ↦ cᵢ, ... }
\end{lstlisting}
%
Computation:
%
\begin{lstlisting}
c ::= return v (pure computation)
| if v then c₁ else c₂ (conditional)
| v₁ v₂ (application)
| with v handle c (handling)
| do x ← c₁ in c₂ (sequencing)
| op (v, λ x . c) (operation call)
| fix x . c (fixed point)
\end{lstlisting}
%
We introduce \textbf{generic operations} as syntactic abbreviation and let
$\mathsf{op}\;v$ stand for $\mathsf{op}(v, \lambda x . \mathsf{return}\; x)$.
\subsection{Operational semantics}
We provide small-step semantics, but big step semantics can also be given (see
reading material). In the rules below \lstinline{h} stands for
%
\begin{lstlisting}
handler { return x ↦ c_ret, ... opᵢ(x,y) ↦ cᵢ, ... }
\end{lstlisting}
%
We write \lstinline{e₁[e₂/x]} for \lstinline{e₁} with \lstinline{e₂} substituted
for \lstinline{x}. The operational rules are:
%
\begin{lstlisting}
________________________________
(if true then c₁ else c₂) ↦ c₁
_________________________________
(if false then c₁ else c₂) ↦ c₂
______________________
(λ x . c) v ↦ c[v/x]
_____________________________________
with h handle return v ↦ c_ret[v/x]
_____________________________________________________________
with h handle opᵢ(v,κ) ↦ cᵢ[v/x, (λ x . with h handle κ x)/y]
_________________________________
do x ← return v in c₂ ↦ c₂[v/x]
_______________________________________________________
do x ← op(v, κ) in c₂ ↦ op(v, λ y . do x ← κ y in c₂)
______________________________
fix x . c ↦ c[(fix x . c)/x]
\end{lstlisting}
\subsection{Effect system}
\subsubsection{Value and computation types}
Value type:
%
\begin{lstlisting}
A, B := bool | A → C | C ⇒ D
\end{lstlisting}
%
Computation type:
%
\begin{lstlisting}
C, D := A!Δ
\end{lstlisting}
%
Dirt:
%
\begin{lstlisting}
Δ ::= {op₁, …, opⱼ}
\end{lstlisting}
%
The idea is that a computation which returns values of type \lstinline{A} and
\emph{may} perform operations \lstinline{op₁, …, opⱼ} has the computation type
\lstinline|A!{op₁, …, opⱼ}|.
\subsubsection{Signature}
We presume that some way of declaring operations is given, i.e., that we have a
signature \lstinline{Σ} which lists operations with their parameters and
arities:
%
\begin{lstlisting}
Σ = { …, opᵢ : Aᵢ ↝ Bᵢ, … }
\end{lstlisting}
%
Note that the the parameter and the arity types \lstinline{Aᵢ} and
\lstinline{Bᵢ} are both value types.
\subsubsection{Typing rules}
A typing context assigns value types to free variables:
%
\begin{lstlisting}
Γ ::= x₁:A₁, …, xᵢ:Aᵢ
\end{lstlisting}
%
We think of \lstinline{Γ} as a map which takes variables to their types.
There are two forms of typing judgment:
%
\begin{enumerate}
\item \lstinline{Γ ⊢ v : A} -- value \lstinline{v} has value type \lstinline{A} in context \lstinline{Γ}
\item \lstinline{Γ ⊢ c : C} -- computation \lstinline{c} has computation type \lstinline{C} in context \lstinline{Γ}
\end{enumerate}
Rules for value typing:
%
\begin{lstlisting}
Γ(x) = A
_________
Γ ⊢ x : A
________________
Γ ⊢ false : bool
________________
Γ ⊢ true : bool
Γ, x : A ⊢ c_ret : B!Θ
Γ, x : Pᵢ, κ : Aᵢ → B!Θ ⊢ cᵢ : B!Θ (for each opᵢ : Pᵢ ↝ Aᵢ in Δ)
_______________________________________________________________________
Γ ⊢ (handler { return x ↦ c_ret, ... opᵢ(x) κ ↦ cᵢ, ... }) : A!Δ ⇒ B!Θ
Γ, x:A ⊢ c : C
_____________________
Γ ⊢ (λ x . c) : A → C
\end{lstlisting}
%
Rules for computation typing:
%
\begin{lstlisting}
Γ ⊢ v : A
__________________
Γ ⊢ return v : A!Δ
Γ ⊢ v : bool Γ ⊢ c₁ : C Γ ⊢ c₂ : C
________________________________________
Γ ⊢ (if v then c₁ else c₂) : C
Γ ⊢ v₁ : A → C Γ ⊢ v₂ : A
____________________________
Γ ⊢ v₁ v₂ : C
Γ ⊢ v : C ⇒ D Γ ⊢ c : C
___________________________
Γ ⊢ (with v handle c) : D
Γ ⊢ c₁ : A!Δ Γ, x:A ⊢ c₂ : B!Δ
_________________________________
Γ ⊢ (do x ← c₁ in c₂) : B!Δ
Γ ⊢ v : Aᵢ opᵢ ∈ Δ opᵢ : Aᵢ ↝ Bᵢ
___________________________________
Γ ⊢ op v : Bᵢ!Δ
Γ, x:A ⊢ c : A!Δ
_____________________
Γ ⊢ (fix x . c) : A!Δ
\end{lstlisting}
\subsection{Safety theorem}
If \lstinline{⊢ c : A!Δ} then:
%
\begin{enumerate}
\item \lstinline{c = return v} for some \lstinline{⊢ v : A} \emph{or}
\item \lstinline{c = op(v, κ)} for some \lstinline{op ∈ Δ} and some value \lstinline{v} and continuation \lstinline{κ}, \emph{or}
\item \lstinline{c ↦ c'} for some \lstinline{⊢ c' : A!Δ}.
\end{enumerate}
%
For a mechanized proof see \href{https://arxiv.org/abs/1306.6316}{An effect
system for algebraic effects and handlers}.
\subsection{Other considerations}
The effect system suffers from the so-called \emph{poisoning}, which can be
resolved if we introduce \textbf{effect subtyping}. Recursion requires that we
use domain-theoretic denotational semantics. Such a semantics turns out to be
adequate (but not fully abstract for the same reasons that domain theory is not
fully abstract for PCF). See \href{https://arxiv.org/abs/1306.6316}{An effect
system for algebraic effects and handlers} where the above points are treated
carefully.
\subsubsection{Problems}
\begin{problem}[Products]
Add simple products \lstinline{A × B} to the core language:
%
\begin{enumerate}
\item Extend the syntax of values with pairs.
\item Extend the syntax of computations with an elimination of pairs, e.g., \lstinline{do (x,y) ← c₁ in c₂}.
\item Extend the operational semantics.
\item Extend the typing rules.
\end{enumerate}
\end{problem}
\begin{problem}[Sums]
Add simple sums \lstinline{A + B} to the core language:
%
\begin{enumerate}
\item Extend the syntax of values with injections.
\item Extend the syntax of computations with an elimination of sums (a suitable \lstinline{match} statement).
\item Extend the operational semantics.
\item Extend the typing rules.
\end{enumerate}
\end{problem}
\begin{problem}[\lstinline{empty} and \lstinline{unit} types]
Add the \lstinline{empty} and \lstinline{unit} types to the core language. Follow the same steps as
in the previous exercises.
\end{problem}
\begin{problem}[Non-terminating program]
Define a program which prints infinitely many booleans. You may assume that the
\lstinline{print : bool → unit} operation is handled appropriately by the runtime
environment. For extra credit, make it "funny".
\end{problem}
\begin{problem}[Implementation]
Implement the core language from Matija Pretnar's
\href{http://www.eff-lang.org/handlers-tutorial.pdf}{tutorial}. To make it
interesting, augment it with recursive function definitions, integers, and
product types. Consider implementing the language as part of the \href{http://plzoo.andrej.com}{Programming
Languages Zoo}.
\end{problem}
\hypertarget{programming-with-algebraic-effects-and-handlers}{%
\section{Programming with algebraic effects and
handlers}\label{programming-with-algebraic-effects-and-handlers}}
In the last lecture we shall explore how algebraic operations and
handlers can be used in programming.
\hypertarget{eff}{%
\subsection{Eff}\label{eff}}
There are several languages that support algebraic effects and handlers.
The ones most faithful to the theory of algebraic effects are
\href{http://www.eff-lang.org}{Eff} and the
\href{https://github.com/ocamllabs/ocaml-multicore}{multicore OCaml}.
They have very similar syntax, and we could use either, but let us use
Eff, just because it was the first language with algebraic effects and
handlers.
You can \href{http://www.eff-lang.org/try/}{run Eff in your browser} or
\href{https://github.com/matijapretnar/eff/\#installation--usage}{install
it} locally. The page also has a quick overview of the syntax of Eff,
which mimics the syntax of OCaml.
\hypertarget{reading-material-1}{%
\subsection{Reading material}\label{reading-material-1}}
We shall draw on examples from
\href{http://www.eff-lang.org/handlers-tutorial.pdf}{An introduction to
algebraic effects and handlers} and
\href{https://arxiv.org/abs/1203.1539}{Programming with algebraic
effects and handlers}. Some examples can be seen also at the
\href{https://github.com/effect-handlers/effects-rosetta-stone}{Effects
Rosetta Stone}.
Other examples, such as I/O and redirection can be seen at the
\href{http://www.eff-lang.org/try/}{try Eff} page.
\hypertarget{basic-examples}{%
\subsection{Basic examples}\label{basic-examples}}
\subsubsection*{Exceptions}
\label{sec:exceptions}
\lstinputlisting{./eff-examples/exception.eff}
\subsubsection*{State}
\label{sec:state}
\lstinputlisting{./eff-examples/state.eff}
\hypertarget{multi-shot-handlers}{%
\subsection{Multi-shot handlers}\label{multi-shot-handlers}}
A handler has access to the continuation, and it may do with it whatever
it likes. We may distinguish handlers according to how many times the
continuation is invoked:
\begin{itemize}
\item
an \textbf{exception-like} handler does not invoke the continuation
\item
a \textbf{single-shot} handler invokes the continuation exactly once
\item
a \textbf{multi-shot} handler invokes the continuation more than once
\end{itemize}
Of course, combinations of these are possible, and there are handlers
where it's difficult to ``count'' the number of invocations of the
continuation, such as multi-threading below.
An exception-like handler is, well, like an exception handler.
A single-shot handler appears to the programmer as a form of
dynamic-dispatch callbacks: performing the operation is like calling the
callback, where the callback is determined dynamically by the enclosing
handlers.
The most interesting (and confusing!) are multi-shot handlers. Let us
have a look at one such handler.
\hypertarget{ambivalent-choice}{%
\subsubsection{Ambivalent choice}\label{ambivalent-choice}}
Ambivalent choice is a computational effect which works as follows. There is an
exception $\mathsf{Fail} : \mathsf{unit} \to \mathsf{empty}$ which signifies
failure to compute successfully, and an operation
$\mathsf{Select} : \alpha\; \mathsf{list} \to \alpha$, which returns one of the
elements of the list. It has to do return an element such that the subsequent
computation does \emph{not} fail (if possible).
With ambivalent choice, we may solve the $n$-queens problem (of
placing $n$ queens on an $n \times n$ chess board so they do
not attack each other):
\lstinputlisting{./eff-examples/queens.eff}
\hypertarget{cooperative-multi-threading}{%
\subsection{Cooperative
multi-threading}\label{cooperative-multi-threading}}
Operations and handlers have explicit access to continuations. A handler
need not invoke a continue, it may instead store it somewhere and run
\emph{another} (previously stored) continuation. This way we get
\emph{threads}.
\lstinputlisting{./eff-examples/thread.eff}
\hypertarget{tree-representation-of-a-functional}{%
\subsection{Tree representation of a
functional}\label{tree-representation-of-a-functional}}
Suppose we have a \textbf{functional}
%
\begin{equation*}
h : (\mathsf{int} \to \mathsf{bool}) \to \mathsf{bool}
\end{equation*}
When we apply it to a function $f : \mathsf{int} \to \mathsf{bool}$, we feel
that $h \; f$ will proceed as follows: $h$ will \emph{ask} $f$ about the value
$f \; x_0$ for some integer $x_0$. Depending on the result it gets, it will then
ask some further question $f \; x_1$, and so on, until it provides an
\emph{answer}~$a$.
We may therefore represent such a functional $h$ as a \textbf{tree}:
%
\begin{itemize}
\item
the leaves are the answers
\item
a node is labeled by a question, which has two subtrees representing
the two possible continuations (depending on the answer)
\end{itemize}
%
We may encode this as the datatype:
%
\begin{verbatim}
type tree =
| Answer of bool
| Question of int * tree * tree
\end{verbatim}
%
Given such a tree, we can recreate the functional $h$:
%
\begin{verbatim}
let rec tree2fun t f =
match t with
| Answer y -> y
| Question (x, t1, t2) -> tree2fun (if f x then t1 else t2) f
\end{verbatim}
%
Can we go backwards? Given $h$, how do we get the tree? It turns out this is not
possible in a purely functional setting in general (but is possible for out
specific case because $\mathsf{int} \to \mathsf{bool}$ is \emph{compact},
Google ``impossible functionals''), but it is with computational effects.
\lstinputlisting{./eff-examples/fun_tree.eff}
\hypertarget{problems-1}{%
\subsection{Problems}\label{problems-1}}
\begin{problem}[Breadth-first search]
Implement the \emph{breadth-first search} strategy for ambivalent choice.
\end{problem}
\begin{problem}[Monte Carlo sampling]
%
The \href{http://www.eff-lang.org/try/}{online Eff} page has an example
showing a handler which modifies a probabilistic computation (one that
uses randomness) to one that computes the \emph{distribution} of
results. The handler computes the distribution in an exhaustive way that
quickly leads to inefficiency.
Improve it by implement a
\href{https://en.wikipedia.org/wiki/Monte_Carlo_method}{Monte Carlo}
handler for estimating distributions of probabilistic computations.
\end{problem}
\begin{problem}[Recursive cows]
Contemplate the
\href{https://github.com/effect-handlers/effects-rosetta-stone/tree/master/examples/recursive-cow}{recursive
cows}.
\end{problem}
\end{document}
%%% Local Variables:
%%% coding: utf-8
%%% mode: latex
%%% TeX-master: t
%%% End: