-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_il_frost.py
executable file
·273 lines (231 loc) · 13.6 KB
/
train_il_frost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch
import torch.nn.functional as F
from torch.optim import SGD, lr_scheduler
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
from sklearn.metrics import adjusted_rand_score as ari_score
from utils.util import cluster_acc, AverageMeter, seed_torch
from utils.logging import Logger
from tqdm import tqdm
import numpy as np
import os
import sys
import copy
import wandb
import math
from models.build_frost import build_frost_model
from data.build_dataset import build_data
from data.config_dataset import set_dataset_config
from utils.frost_feat_replay import FeatureReplayer
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='cluster', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Hyper-parameters Setting
parser.add_argument('--labeling_method', type=str, default='rankstats', choices=['rankstats', 'sinkhorn'])
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=1e-4)
# UNO knobs
parser.add_argument("--softmax_temp", default=0.1, type=float, help="softmax temperature")
parser.add_argument("--num_iters_sk", default=3, type=int, help="number of iters for Sinkhorn")
parser.add_argument("--epsilon_sk", default=0.05, type=float, help="epsilon for the Sinkhorn")
parser.add_argument('--alpha', default=0.75, type=float)
# Strategy tricks
parser.add_argument('--step_size', default=70, type=int)
parser.add_argument('--w_kd', type=float, default=10.0)
parser.add_argument('--rampup_length', default=75, type=int)
parser.add_argument('--rampup_coefficient', type=float, default=25)
parser.add_argument('--increment_coefficient', type=float, default=0.05)
parser.add_argument('--topk', default=5, type=int)
parser.add_argument('--w_replay', type=float, default=1.0, help='weight for feature replay loss')
# Dataset Setting
parser.add_argument('--dataset_name', type=str, default='cifar100', choices=['cifar10', 'cifar100', 'tinyimagenet',
'cub200', 'herb19', 'scars',
'aircraft'])
# parser.add_argument('--dataset_root', type=str, default='./data/datasets/CIFAR/')
# parser.add_argument('--num_classes', default=100, type=int)
parser.add_argument('--aug_type', type=str, default='vit_uno', choices=['vit_frost', 'vit_uno', 'resnet'])
parser.add_argument('--num_workers', default=2, type=int)
# Strategy Setting
parser.add_argument('--num_steps', default=5, type=int)
parser.add_argument('--current_step', default=0, type=int)
# Model Config
parser.add_argument('--mode', type=str, default='train', choices=['train', 'eval'])
parser.add_argument('--model_name', type=str, default='vit_dino')
parser.add_argument('--grad_from_block', type=int, default=11)
parser.add_argument('--num_mlp_layers', type=int, default=1)
parser.add_argument('--dino_pretrain_path', type=str,
default='./models/dino_weights/dino_vitbase16_pretrain.pth')
parser.add_argument('--model_head', type=str, default='LinearHead', choices=['LinearHead', 'DINOHead'])
# Experimental Setting
parser.add_argument('--seed', default=10, type=int)
parser.add_argument('--exp_root', type=str, default='./outputs_frost/')
parser.add_argument('--exp_marker', type=str, default='warmedup')
parser.add_argument('--wandb_mode', type=str, default='online', choices=['online', 'offline', 'disabled'])
parser.add_argument('--wandb_entity', type=str, default='oatmealliu')
# ----------------------
# Initial Configurations
# ----------------------
args = parser.parse_args()
# init. dataset config.
args = set_dataset_config(args)
# init. config.
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
args.device = torch.device("cuda" if args.cuda else "cpu")
seed_torch(args.seed)
# init. experimental output path
runner_name = os.path.basename(__file__).split(".")[0]
# set a dir name which can describe the experiment
model_dir = os.path.join(args.exp_root, f"{runner_name}_Pseudo={args.labeling_method}_{args.dataset_name}_Steps{args.num_steps}_Block{args.grad_from_block}")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
if args.labeling_method == 'rankstats':
from methods.frost_method import FRoST as Method
args.project_name = 'SOTA_FRoST'
else:
from methods.frost_sinkhorn import FRoST as Method
args.project_name = 'SOTA_FRoST_Sinkhorn'
if args.current_step == 0:
# Single model and head saving path
args.save_single_model_path = model_dir + f"/single_Backbone_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_Block{args.grad_from_block}.pth"
args.save_single_head_path = model_dir + f"/single_Head_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_Block{args.grad_from_block}.pth"
else:
# Single model and head saving path
args.save_single_model_path = model_dir + f"/single_Backbone_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_Block{args.grad_from_block}.pth"
args.save_single_head_path = model_dir + f"/single_Head_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_Block{args.grad_from_block}.pth"
# Joint model and head saving path
args.save_joint_model_path = model_dir + f"/joint_Backbone_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_Block{args.grad_from_block}.pth"
args.save_joint_head_path = model_dir + f"/joint_Head_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_Block{args.grad_from_block}.pth"
# Previous learned single model and head path
args.prev_single_backbone_paths_list = []
args.prev_single_head_paths_list = []
for step in range(args.current_step):
this_single_backbone_path = model_dir + f"/single_Backbone_S{step}_{args.dataset_name}_Steps{args.num_steps}_Block{args.grad_from_block}.pth"
this_single_head_path = model_dir + f"/single_Head_S{step}_{args.dataset_name}_Steps{args.num_steps}_Block{args.grad_from_block}.pth"
args.prev_single_backbone_paths_list.append(this_single_backbone_path)
args.prev_single_head_paths_list.append(this_single_head_path)
args.log_dir = model_dir + f'/{args.dataset_name}_S{str(args.current_step)}-{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}_Block{args.grad_from_block}_log.txt'
sys.stdout = Logger(args.log_dir)
print('log_dir=', args.log_dir)
# WandB setting
wandb_tags = [args.dataset_name, f'TotalStep={args.num_steps}', f'Steps={str(args.current_step)}', "FRoST",
f'Block={args.grad_from_block}', f'device={args.device}', f'Pseudo={args.labeling_method}']
wandb_run_name = f'FRoST_{args.dataset_name}_S{str(args.current_step)}/{args.num_steps}_Block{args.grad_from_block}'
wandb.init(project=args.project_name,
entity=args.wandb_entity,
tags=wandb_tags,
name=wandb_run_name,
mode=args.wandb_mode)
# ----------------------
# Experimental Setting Initialization
# ----------------------
# Dataset Split Params
args.num_novel_interval = math.ceil(args.num_classes / args.num_steps)
args.current_novel_start = args.num_novel_interval * args.current_step
args.current_novel_end = args.num_novel_interval * (args.current_step + 1) \
if args.num_novel_interval * (args.current_step + 1) <= args.num_classes \
else args.num_classes
args.num_novel_per_step = args.current_novel_end - args.current_novel_start
# ViT DINO B/16 Params
# Parameters
args.image_size = 224
args.interpolation = 3
args.crop_pct = 0.875
args.pretrain_path = args.dino_pretrain_path
args.feat_dim = 768
args.mlp_out_dim = args.num_novel_per_step
# ----------------------
# Dataloaders Creation for this iNCD step
# ----------------------
data_factory = build_data(args)
# Train loader
ulb_train_loader = data_factory.get_dataloader(split='train', aug='twice', shuffle=True,
target_list=range(args.current_novel_start, args.current_novel_end))
# Mixed-val loader
if args.current_step > 0:
ulb_all_prev_val_loader = data_factory.get_dataloader(split='train', aug=None, shuffle=False,
target_list=range(args.current_novel_start))
else:
ulb_all_prev_val_loader = None
ulb_all_val_loader = data_factory.get_dataloader(split='train', aug=None, shuffle=False,
target_list=range(args.current_novel_end))
val_split = args.val_split
test_split = args.test_split
# Mixed-test loader
if args.current_step > 0:
ulb_all_prev_test_loader = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(args.current_novel_start))
else:
ulb_all_prev_test_loader = None
ulb_all_test_loader = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(args.current_novel_end))
# Step-wise val/test loader list
ulb_step_val_loader_list = []
ulb_step_test_loader_list = []
for s in range(1 + args.current_step):
if (1 + s) < args.num_steps:
this_ulb_val_loader = data_factory.get_dataloader(split=val_split, aug=None, shuffle=False,
target_list=range(s * args.num_novel_interval,
(1 + s) * args.num_novel_interval))
this_ulb_test_loader = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(s * args.num_novel_interval,
(1 + s) * args.num_novel_interval))
else:
this_ulb_val_loader = data_factory.get_dataloader(split=val_split, aug=None, shuffle=False,
target_list=range(args.current_novel_start,
args.current_novel_end))
this_ulb_test_loader = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(args.current_novel_start,
args.current_novel_end))
ulb_step_val_loader_list.append(this_ulb_val_loader)
ulb_step_test_loader_list.append(this_ulb_test_loader)
if args.mode == 'train' and args.current_step == 0:
print("Init-Training")
model, single_head = build_frost_model(args)
# FRoST method object
method = Method(model=model, single_head=single_head,
joint_head=None, prev_pair_list=None, feat_replayer=None,
train_loader=ulb_train_loader,
ulb_step_val_list=ulb_step_val_loader_list,
ulb_all_prev_val=ulb_all_prev_val_loader,
ulb_all_val=ulb_all_val_loader,
ulb_step_test_list=ulb_step_test_loader_list,
ulb_all_prev_test=ulb_all_prev_test_loader,
ulb_all_test=ulb_all_test_loader)
# Training
# |- Train
method.train_init(args)
# |- Save learned model and head
method.save_single(model_path=args.save_single_model_path, head_path=args.save_single_head_path)
# |- Test evaluation
method.test_init(args)
elif args.mode == 'train' and args.current_step > 0:
print("Incremental-Training")
model, single_head, joint_head, prev_pair_list = build_frost_model(args)
# Create Feature Replayer model
feat_replayer = FeatureReplayer(args, prev_pair_list, data_factory)
# FRoST method object
method = Method(model=model, single_head=single_head,
joint_head=joint_head, prev_pair_list=prev_pair_list, feat_replayer=feat_replayer,
train_loader=ulb_train_loader,
ulb_step_val_list=ulb_step_val_loader_list,
ulb_all_prev_val=ulb_all_prev_val_loader,
ulb_all_val=ulb_all_val_loader,
ulb_step_test_list=ulb_step_test_loader_list,
ulb_all_prev_test=ulb_all_prev_test_loader,
ulb_all_test=ulb_all_test_loader)
# Training
# |- Train
method.train_IL(args)
# |- Save learned models and heads
method.save_single(model_path=args.save_single_model_path, head_path=args.save_single_head_path)
method.save_joint(model_path=args.save_joint_head_path, head_path=args.save_joint_model_path)
# |- Test evaluation
method.test_IL(args)
elif args.mode == 'eval':
raise NotImplementedError
else:
raise NotImplementedError