-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_manifold_hopper.py
executable file
·232 lines (191 loc) · 11.2 KB
/
train_manifold_hopper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
from utils.util import seed_torch
from utils.logging import Logger
import os
import sys
import wandb
import math
from models.build_manifold_hopper import build_manifold_hopper
from data.build_dataset import build_data
from methods.manifold_hopper import ManifoldHopper
from utils.sinkhorn_knopp import SinkhornKnopp
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='cluster', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Hyper-parameters Setting
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-5)
# Method-specific knobs
parser.add_argument('--dim_reduction', type=int, default=256, help="dimensionality reduction step")
parser.add_argument('--pred_method', type=str, default='voting', choices=['voting', 'average'])
parser.add_argument('--feat_slice', type=str, default='rank', choices=['rank', 'cutoff'])
# UNO knobs
parser.add_argument("--softmax_temp", default=0.1, type=float, help="softmax temperature")
parser.add_argument("--threshold", default=0.5, type=float, help="threshold for hard pseudo-labeling")
parser.add_argument("--num_iters_sk", default=3, type=int, help="number of iters for Sinkhorn")
parser.add_argument("--epsilon_sk", default=0.05, type=float, help="epsilon for the Sinkhorn")
parser.add_argument('--alpha', default=0.75, type=float)
# Dataset Setting
parser.add_argument('--dataset_root', type=str, default='./data/datasets/CIFAR/')
parser.add_argument('--dataset_name', type=str, default='cifar100', help='options: cifar10, cifar100, tinyimagenet, cub200, herb19')
parser.add_argument('--num_classes', default=100, type=int)
parser.add_argument('--aug_type', type=str, default='vit_uno', choices=['vit_frost', 'vit_uno', 'resnet'])
parser.add_argument('--num_workers', default=8, type=int)
# Strategy Setting
parser.add_argument('--num_steps', default=10, type=int)
parser.add_argument('--current_step', default=0, type=int)
# Model Config
parser.add_argument('--mode', type=str, default='train', choices=['train', 'eval'])
parser.add_argument('--model_name', type=str, default='vit_dino')
parser.add_argument('--grad_from_block', type=int, default=12) # 12->do not fine tune backbone at all
parser.add_argument('--num_mlp_layers', type=int, default=1) # 12->do not fine tune backbone at all
parser.add_argument('--dino_pretrain_path', type=str,
default='./models/dino_weights/dino_vitbase16_pretrain.pth')
parser.add_argument('--model_head', type=str, default='LinearHead', choices=['LinearHead', 'DINOHead'])
# Experimental Setting
parser.add_argument('--seed', default=10, type=int)
parser.add_argument('--exp_root', type=str, default='./outputs/')
parser.add_argument('--wandb_mode', type=str, default='online', choices=['online', 'offline', 'disabled'])
parser.add_argument('--wandb_entity', type=str, default='oatmealliu')
# ----------------------
# Initial Configurations
# ----------------------
args = parser.parse_args()
# init. config.
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
args.device = torch.device("cuda" if args.cuda else "cpu")
seed_torch(args.seed)
# init. experimental output path
runner_name = os.path.basename(__file__).split(".")[0]
# set a dir name which can describe the experiment
model_dir = os.path.join(args.exp_root, f"{runner_name}_{args.model_name}_{args.dataset_name}_Steps{args.num_steps}_FeatSlice_{args.feat_slice}_DimReduction_{args.dim_reduction}_PredMethod_{args.pred_method}")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# path to pre-trained teacher heads weights .pth file
args.learned_single_head_paths_list = []
for step in range(args.current_step):
this_single_path = model_dir + f"/SingleHead_S{step}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}.pth"
args.learned_single_head_paths_list.append(this_single_path)
args.save_single_path = model_dir + f"/SingleHead_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}.pth"
args.save_joint_path = model_dir + f"/JointHead_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}.pth"
args.log_dir = model_dir + f'/{args.dataset_name}_S{str(args.current_step)}-{args.num_steps}_FeatSlice_{args.feat_slice}_DimReduction_{args.dim_reduction}_PredMethod_{args.pred_method}_log.txt'
sys.stdout = Logger(args.log_dir)
print('log_dir=', args.log_dir)
# WandB setting
if args.mode == 'train':
wandb_run_name = f'Manifold-Hopper_{args.model_name}_{args.dataset_name}_S{str(args.current_step)}-{args.num_steps}_FeatSlice_{args.feat_slice}_DimReduction_{args.dim_reduction}_PredMethod_{args.pred_method}'
wandb_tags = [f'TotalStep={args.num_steps}', args.dataset_name, f'Steps={str(args.current_step)}',
args.model_name, f'DimReductionSetp={args.dim_reduction}', f'PredMethod={args.pred_method}',
f'Device={args.device}', f'FeatSlice={args.feat_slice}']
wandb.init(project='Our_ManifoldHopper',
entity=args.wandb_entity,
tags=wandb_tags,
name=wandb_run_name,
mode=args.wandb_mode)
# ----------------------
# Experimental Setting Initialization
# ----------------------
# Dataset Split Params
args.num_novel_interval = math.ceil(args.num_classes / args.num_steps)
args.current_novel_start = args.num_novel_interval * args.current_step
args.current_novel_end = args.num_novel_interval * (args.current_step + 1) \
if args.num_novel_interval * (args.current_step + 1) <= args.num_classes \
else args.num_classes
args.num_novel_per_step = args.current_novel_end - args.current_novel_start
# ViT DINO B/16 Params
# Parameters
args.image_size = 224
args.interpolation = 3
args.crop_pct = 0.875
args.pretrain_path = args.dino_pretrain_path
args.feat_dim = 768
args.mlp_out_dim = args.num_novel_per_step
# ----------------------
# Dataloaders Creation for this iNCD step
# ----------------------
data_factory = build_data(args)
# Train loader
ulb_train_loader = data_factory.get_dataloader(split='train', aug='twice', shuffle=True,
target_list=range(args.current_novel_start, args.current_novel_end))
# Mixed-val loader
if args.current_step > 0:
ulb_all_prev_val_loader = data_factory.get_dataloader(split='train', aug=None, shuffle=False,
target_list=range(args.current_novel_start))
else:
ulb_all_prev_val_loader = None
ulb_all_val_loader = data_factory.get_dataloader(split='train', aug=None, shuffle=False,
target_list=range(args.current_novel_end))
# Mixed-test loader
if args.current_step > 0:
ulb_all_prev_test_loader = data_factory.get_dataloader(split='test', aug=None, shuffle=False,
target_list=range(args.current_novel_start))
else:
ulb_all_prev_test_loader = None
ulb_all_test_loader = data_factory.get_dataloader(split='test', aug=None, shuffle=False,
target_list=range(args.current_novel_end))
# Step-wise val/test loader list
ulb_step_val_loader_list = []
ulb_step_test_loader_list = []
for s in range(1 + args.current_step):
if (1 + s) < args.num_steps:
this_ulb_val_loader = data_factory.get_dataloader(split='train', aug=None, shuffle=False,
target_list=range(s * args.num_novel_interval,
(1 + s) * args.num_novel_interval))
this_ulb_test_loader = data_factory.get_dataloader(split='test', aug=None, shuffle=False,
target_list=range(s * args.num_novel_interval,
(1 + s) * args.num_novel_interval))
else:
this_ulb_val_loader = data_factory.get_dataloader(split='train', aug=None, shuffle=False,
target_list=range(args.current_novel_start,
args.current_novel_end))
this_ulb_test_loader = data_factory.get_dataloader(split='test', aug=None, shuffle=False,
target_list=range(args.current_novel_start,
args.current_novel_end))
ulb_step_val_loader_list.append(this_ulb_val_loader)
ulb_step_test_loader_list.append(this_ulb_test_loader)
# ----------------------
# Teacher Student model creation:
# model: large-scale pre-trained backbone
# teachers_list: pre-trained single head model
# student: joint head model
# ----------------------
model, single_head, single_heads_list, joint_head = build_manifold_hopper(args)
print(args)
print("------> Backbone model:")
print(model)
print("------> Teacher heads")
for s_single in single_heads_list:
print(s_single)
print("------> Student head:")
print(single_head)
print("------> Joint head:")
print(joint_head)
if args.mode == 'train':
# Create Feature Replayer model
sinkhorn = SinkhornKnopp(args)
# Weight Discprepancy learning strategy
method = ManifoldHopper(model=model, single_head=single_head, learned_single_heads=single_heads_list,
joint_head=joint_head,
sinkhorn=sinkhorn,
train_loader=ulb_train_loader,
ulb_step_val_list=ulb_step_val_loader_list,
ulb_all_prev_val=ulb_all_prev_val_loader,
ulb_all_val=ulb_all_val_loader,
ulb_step_test_list=ulb_step_test_loader_list,
ulb_all_prev_test=ulb_all_prev_test_loader,
ulb_all_test=ulb_all_test_loader)
method.train(args)
# Save trained student head weights
method.save_single(path=args.save_single_path)
method.save_joint_head(args, path=args.save_joint_path)
# Final test with test loader
method.test(args)
elif args.mode == 'eval':
raise NotImplementedError
else:
raise NotImplementedError