-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_upper_unlocked_joint_teacher_student.py
executable file
·293 lines (243 loc) · 15.7 KB
/
train_upper_unlocked_joint_teacher_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import torch.nn.functional as F
from torch.optim import SGD, lr_scheduler
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
from sklearn.metrics import adjusted_rand_score as ari_score
from utils.util import cluster_acc, AverageMeter, seed_torch
from utils.logging import Logger
from tqdm import tqdm
import numpy as np
import os
import sys
import copy
import wandb
import math
from utils.sinkhorn_knopp import SinkhornKnopp
from models.build_unlocked_upper import build_unlocked_model
from data.build_dataset import build_data
from data.config_dataset import set_dataset_config
from methods.upper_bound_unlocked_method import UnlockedUpperBound
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='cluster', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Hyper-parameters Setting
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-5)
# Strategy tricks
# parser.add_argument('--l2_single_cls', action='store_true', default=False,
# help='L2 normalize single classifier weights before forward-prop')
parser.add_argument('--student_loss', type=str, default='ZP', choices=['CE', 'ZP'], help="CE(cross-entropy loss w/o zero-padding), ZP(w/ zero-padding")
# UNO knobs
parser.add_argument("--softmax_temp", default=0.1, type=float, help="softmax temperature")
parser.add_argument("--threshold", default=0.5, type=float, help="threshold for hard pseudo-labeling")
parser.add_argument("--num_iters_sk", default=3, type=int, help="number of iters for Sinkhorn")
parser.add_argument("--epsilon_sk", default=0.05, type=float, help="epsilon for the Sinkhorn")
parser.add_argument('--alpha', default=0.75, type=float)
# Dataset Setting
parser.add_argument('--dataset_name', type=str, default='cifar100', choices=['cifar10', 'cifar100', 'tinyimagenet',
'cub200', 'herb19', 'scars',
'aircraft'])
# parser.add_argument('--dataset_root', type=str, default='./data/datasets/CIFAR/')
# parser.add_argument('--num_classes', default=100, type=int)
parser.add_argument('--aug_type', type=str, default='vit_uno', choices=['vit_frost', 'vit_uno', 'resnet'])
parser.add_argument('--num_workers', default=2, type=int)
# Strategy Setting
parser.add_argument('--num_steps', default=5, type=int)
parser.add_argument('--current_step', default=0, type=int)
parser.add_argument('--stage', type=str, default='stage1', choices=['stage1', 'stage2'])
# Model Config
parser.add_argument('--mode', type=str, default='train', choices=['train', 'eval'])
parser.add_argument('--model_name', type=str, default='vit_dino')
parser.add_argument('--grad_from_block', type=int, default=11) # 12->do not fine tune backbone at all
parser.add_argument('--num_mlp_layers', type=int, default=1) # 12->do not fine tune backbone at all
parser.add_argument('--dino_pretrain_path', type=str,
default='./models/dino_weights/dino_vitbase16_pretrain.pth')
parser.add_argument('--model_head', type=str, default='LinearHead', choices=['LinearHead', 'DINOHead'])
# Experimental Setting
parser.add_argument('--seed', default=10, type=int)
parser.add_argument('--exp_root', type=str, default='./outputs_upper_unlocked/')
parser.add_argument('--weights_root', type=str, default='./models/single_weights/')
parser.add_argument('--exp_marker', type=str, default='warmedup')
parser.add_argument('--wandb_mode', type=str, default='online', choices=['online', 'offline', 'disabled'])
parser.add_argument('--wandb_entity', type=str, default='oatmealliu')
# ----------------------
# Initial Configurations
# ----------------------
args = parser.parse_args()
# init. dataset config.
args = set_dataset_config(args)
# init. config.
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
args.device = torch.device("cuda" if args.cuda else "cpu")
seed_torch(args.seed)
# init. experimental output path
runner_name = os.path.basename(__file__).split(".")[0]
# set a dir name which can describe the experiment
model_dir = os.path.join(args.exp_root, f"{runner_name}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}_Loss{args.student_loss}_Block{args.grad_from_block}_{args.exp_marker}")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
if args.stage == 'stage1':
# Warmed-up single head path
warmup_student_head_dir = f"{args.weights_root}{args.model_name}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}"
# warmup_student_head_dir = f"{args.weights_root}{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}"
args.warmup_student_head_path = warmup_student_head_dir+f"/SingleHead_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}.pth"
# Single model and head saving path
args.save_student_model_path = model_dir + f"/single_Backbone_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}_Loss{args.student_loss}_Block{args.grad_from_block}.pth"
args.save_student_head_path = model_dir + f"/single_Head_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}_Loss{args.student_loss}_Block{args.grad_from_block}.pth"
if args.stage == 'stage2':
# path to pre-trained teacher heads weights .pth file
args.pretrained_teacher_backbone_paths_list = []
args.pretrained_teacher_head_paths_list = []
for step in range(1+args.current_step):
this_teacher_backbone_path = model_dir + f"/single_Backbone_S{step}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}_Loss{args.student_loss}_Block{args.grad_from_block}.pth"
this_teacher_head_path = model_dir + f"/single_Head_S{step}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}_Loss{args.student_loss}_Block{args.grad_from_block}.pth"
args.pretrained_teacher_backbone_paths_list.append(this_teacher_backbone_path)
args.pretrained_teacher_head_paths_list.append(this_teacher_head_path)
# Joint model and head saving path
args.save_joint_model_path = model_dir + f"/joint_Backbone_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}_Loss{args.student_loss}_Block{args.grad_from_block}.pth"
args.save_joint_head_path = model_dir + f"/joint_Head_S{args.current_step}_{args.dataset_name}_Steps{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}_Loss{args.student_loss}_Block{args.grad_from_block}.pth"
args.log_dir = model_dir + f'/{args.stage}_{args.dataset_name}_S{str(args.current_step)}-{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}_Loss{args.student_loss}_Block{args.grad_from_block}_log.txt'
sys.stdout = Logger(args.log_dir)
print('log_dir=', args.log_dir)
# WandB setting
wandb_tags = [f'TotalStep={args.num_steps}', "Unlocked", args.stage, args.dataset_name, args.model_name,
f'Steps={str(args.current_step)}', args.exp_marker, f'Block={args.grad_from_block}']
wandb_run_name = f'{args.stage}_Upper_unlocked_{args.dataset_name}_S{str(args.current_step)}/{args.num_steps}_{args.model_head}_Mlp{args.num_mlp_layers}_Loss{args.student_loss}_Block{args.grad_from_block}_{args.exp_marker}'
wandb.init(project='Upper_Joint_Train_Unlock',
entity=args.wandb_entity,
tags=wandb_tags,
name=wandb_run_name,
mode=args.wandb_mode)
# ----------------------
# Experimental Setting Initialization
# ----------------------
# Dataset Split Params
args.num_novel_interval = math.ceil(args.num_classes / args.num_steps)
args.current_novel_start = args.num_novel_interval * args.current_step
args.current_novel_end = args.num_novel_interval * (args.current_step + 1) \
if args.num_novel_interval * (args.current_step + 1) <= args.num_classes \
else args.num_classes
args.num_novel_per_step = args.current_novel_end - args.current_novel_start
# ViT DINO B/16 Params
# Parameters
args.image_size = 224
args.interpolation = 3
args.crop_pct = 0.875
args.pretrain_path = args.dino_pretrain_path
args.feat_dim = 768
args.mlp_out_dim = args.num_novel_per_step
# ----------------------
# Dataloaders Creation for this iNCD step
# ----------------------
data_factory = build_data(args)
# Train loader list for joint training
ulb_train_loader_list = []
for s in range(1 + args.current_step):
if (1 + s) < args.num_steps:
s_ulb_train_loader = data_factory.get_dataloader(split='train', aug='twice', shuffle=True,
target_list=range(s * args.num_novel_interval,
(1 + s) * args.num_novel_interval))
else:
s_ulb_train_loader = data_factory.get_dataloader(split='train', aug='twice', shuffle=True,
target_list=range(args.current_novel_start,
args.current_novel_end))
ulb_train_loader_list.append(s_ulb_train_loader)
val_split = args.val_split
test_split = args.test_split
# Mixed-val loader
if args.current_step > 0:
ulb_all_prev_val_loader = data_factory.get_dataloader(split='train', aug=None, shuffle=False,
target_list=range(args.current_novel_start))
else:
ulb_all_prev_val_loader = None
ulb_all_val_loader = data_factory.get_dataloader(split='train', aug=None, shuffle=False,
target_list=range(args.current_novel_end))
# Mixed-test loader
if args.current_step > 0:
ulb_all_prev_test_loader = data_factory.get_dataloader(split='test', aug=None, shuffle=False,
target_list=range(args.current_novel_start))
else:
ulb_all_prev_test_loader = None
ulb_all_test_loader = data_factory.get_dataloader(split='test', aug=None, shuffle=False,
target_list=range(args.current_novel_end))
# Step-wise val/test loader list
ulb_step_val_loader_list = []
ulb_step_test_loader_list = []
for s in range(1 + args.current_step):
if (1 + s) < args.num_steps:
this_ulb_val_loader = data_factory.get_dataloader(split=val_split, aug=None, shuffle=False,
target_list=range(s * args.num_novel_interval,
(1 + s) * args.num_novel_interval))
this_ulb_test_loader = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(s * args.num_novel_interval,
(1 + s) * args.num_novel_interval))
else:
this_ulb_val_loader = data_factory.get_dataloader(split=val_split, aug=None, shuffle=False,
target_list=range(args.current_novel_start,
args.current_novel_end))
this_ulb_test_loader = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(args.current_novel_start,
args.current_novel_end))
ulb_step_val_loader_list.append(this_ulb_val_loader)
ulb_step_test_loader_list.append(this_ulb_test_loader)
if args.mode == 'train' and args.stage == 'stage1':
student_model, student_head = build_unlocked_model(args)
print(args)
# print("------> Single head for this step:")
# print(student_head)
# Create SinkhornKnopp pseudo-labeling algo.
sinkhorn = SinkhornKnopp(args)
# TeacherStudent learning strategy
method = UnlockedUpperBound(student_model=student_model, student_head=student_head,
teacher_pair_list=None,
joint_model=None, joint_head=None,
sinkhorn=sinkhorn,
train_loader_list=ulb_train_loader_list,
ulb_step_val_list=ulb_step_val_loader_list,
ulb_all_prev_val=ulb_all_prev_val_loader,
ulb_all_val=ulb_all_val_loader,
ulb_step_test_list=ulb_step_test_loader_list,
ulb_all_prev_test=ulb_all_prev_test_loader,
ulb_all_test=ulb_all_test_loader)
# Training
# |- Stage-1: train a task-specific model and head
method.train_single(args)
method.save_student(model_path=args.save_student_model_path, head_path=args.save_student_head_path)
method.test_single(args)
elif args.mode == 'train' and args.stage == 'stage2':
# load and create models
# |- teacher_pair_list: pre-trained single models and heads
# |- joint_model and joint_head: to-be-trained model and head
teacher_pair_list, joint_model, joint_head = build_unlocked_model(args)
print(args)
print("------> Single heads from previous steps:")
for (_, teacher_head) in teacher_pair_list:
print(teacher_head)
print("------> Joint head:")
print(joint_head)
# TeacherStudent learning strategy
method = UnlockedUpperBound(student_model=None, student_head=None,
teacher_pair_list=teacher_pair_list,
joint_model=joint_model, joint_head=joint_head,
sinkhorn=None,
train_loader_list=ulb_train_loader_list,
ulb_step_val_list=ulb_step_val_loader_list,
ulb_all_prev_val=ulb_all_prev_val_loader,
ulb_all_val=ulb_all_val_loader,
ulb_step_test_list=ulb_step_test_loader_list,
ulb_all_prev_test=ulb_all_prev_test_loader,
ulb_all_test=ulb_all_test_loader)
# Training
# |- Stage-2: train a task-agnostic joint model and head
method.train_joint(args)
method.save_joint(model_path=args.save_joint_model_path, head_path=args.save_joint_head_path)
method.test_joint(args)
elif args.mode == 'eval':
raise NotImplementedError
else:
raise NotImplementedError