-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
52 lines (39 loc) · 1.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from datasets import load_dataset
import torch
from evaluation import evaluate_model_on_kotlin_humaneval
from train import train_model
dataset = load_dataset("JetBrains/Kotlin_HumanEval")["train"].select(range(1))
device = "cuda" if torch.cuda.is_available() else "cpu"
def train_fine_tuned_model():
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3b-code-base-2k")
model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-3b-code-base-2k", quantization_config=bnb_config, trust_remote_code=True).to(device)
train_model(device, model, tokenizer)
def evaluate_original():
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3b-code-base-2k")
model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-3b-code-base-2k").to(device)
model.eval()
result, executable_code, broken_code = evaluate_model_on_kotlin_humaneval(device, model, tokenizer, dataset)
print(f"Executable code -> {executable_code}")
print(f"Broken code -> {broken_code}")
print(f"Good results from executable -> {result*100}%")
def evaluate_fine_tuned():
tokenizer = AutoTokenizer.from_pretrained("./model")
model = AutoModelForCausalLM.from_pretrained("./model").to(device)
model.eval()
result, executable_code, broken_code = evaluate_model_on_kotlin_humaneval(device, model, tokenizer, dataset)
print(f"Executable code -> {executable_code}")
print(f"Broken code -> {broken_code}")
print(f"Good results from executable -> {result*100}%")
if __name__ == "__main__":
print("--- ORIGINAL MODEL ---")
evaluate_original()
train_fine_tuned_model()
print("--- FINE-TUNED MODEL ---")
evaluate_fine_tuned()