-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmethods.qmd
682 lines (557 loc) · 26.1 KB
/
methods.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
---
title: "Methods"
author: [Shixiang Wang, Yankun Zhao]
date: 2024-12-04
draft: false
toc: true
toc-depth: 3
toc-expand: 2
format:
html:
code-fold: true
code-overflow: wrap
code-tools: false
code-link: true
---
## Gene Fusions identification and differential expression analysis
We employed two Gene Fusions(GFs) detection tools, including arriba, STAR-Fusion, to identify, parse, and annotate GFs junctions within each sample, using the human genome version hg38 as the reference. In our pursuit of biologically robust GFs identification within each cohort, we undertook an approach metafusion that amalgamated results from two GFs detection tools. Firstly, we exclusively retained Fusions located on chromosomes 1 to 22, as well as the X and Y chromosomes. Secondly, GFs were mandated to exhibit genomic overlap with gene regions as defined in the reference genome annotation file, specifically "gencode.v34.annotation.gtf.". Thirdly to ensure the precision and recall in GFs prediction with different tools, one can either rely on consensus predictions or all predctions and choosing junction-crossing reads and reads mates which flank (span) the breakpoint. Fourthly, we offer FusionAnnotator to identify and prioritize GFs that have been previously reported in cancer or normal samples. Lastly, the detected data can be divided into Cis-SAGes and other categories to further explore the debate on what should be considered true fusion RNAs. This meticulous methodological approach was instrumental in ensuring the acquisition of biologically sound and reliable GFs datasets, thereby fortifying the integrity of our analysis within each cohort. This analysis facilitated comparisons between patient groups, such as those who responded to checkpoint immunotherapy versus non-responders, as well as between samples collected before and during ICB treatment.
## Response and Response2
We gathered and processed patient 'Response' data from various cohorts. However, due to inconsistencies among these cohorts, such as the usage of different terms like CR, PR, SD, PD, R, NR, DCB, and NDB, we harmonized the response variable based on the timing of treatment and treatment response. As a result, we introduced a new variable called 'Response2' with four distinct categories: Pre-R, Pre-NR, On-R, and On-NR. In cases where response data was not available, we assigned the category NE.
## Cancer Type Abbreviation
| Abbr. | Description |
| :----------------- | :----------------------------------------------------------- |
| BLCA | Bladder urothelial carcinoma |
| SKCM | Skin cutaneous melanoma |
| KIRC & CCRCC | Kidney renal clear cell carcinoma |
| HNSC & HNSCC | Head and neck squamous cell carcinoma |
| NSCLC | Non-small cell lung cancer, including lung adenocarcinoma and lung squamous cell carcinoma |
| SCLC | Small cell lung cancer |
| SARC | Sarcoma |
| BRCA | Breast cancer |
| GBM | Glioblastoma Multiforme |
| STAD | Stomach Adenocarcinoma |
| SGC | Salivary gland cancer |
| LUSC | Lung Squamous Cell Carcinoma |
| MESO | Mesothelioma |
| PCPG | Pheochromocytoma and Paraganglioma |
| LIHC | Liver Hepatocellular Carcinoma |
| PRAD | Prostate Adenocarcinoma |
| ACC | Adrenocortical Carcinoma |
| TGCT | Testicular Germ Cell Tumors |
| PAAD | Pancreatic Adenocarcinoma |
| UCEC | Uterine Corpus Endometrial Carcinoma |
| THCA | Thyroid carcinoma |
| CESC | Cervical squamous cell carcinoma and endocervical adenocarcinoma |
| ESCA | Esophageal carcinoma |
| READ | Rectum adenocarcinoma |
| OV | Ovarian Serous Cystadenocarcinoma |
| CHOL | Cholangiocarcinoma |
| UCS | Uterine Carcinosarcoma |
| LUAD | Lung Adenocarcinoma |
| LGG | Brain Lower Grade Glioma |
| HGSC | High-Grade Serous Carcinoma |
| LSCC | Lung Squamous Cell Carcinoma |
| PDAC | Pancreatic Ductal Adenocarcinoma |
| THYM | Thymoma |
| KICH | Kidney Chromophobe |
| KIRP | Kidney Renal Papillary Cell Carcinoma |
| COAD | Colon Adenocarcinoma |
| LAML & AML | Acute Myeloid Leukemia |
| DLBC | Lymphoid Neoplasm Diffuse Large B-cell Lymphoma |
| ALL | Acute lymphocytic leukemia |
| AML-IF | Acute Myeloid Leukemia, Induction Failure Subproject |
| NBL | Neuroblastoma |
| OS | Osteosarcoma |
| ES | Ewing sarcoma |
| WT | Wilms tumor |
| CCSK | Clear Cell Sarcoma of the Kidney |
| RT | Kidney, Rhabdoid Tumor |
| CCSK | CNS, ependymoma |
| MRT | CNS, rhabdoid tumor |
| CCSK | CNS, medulloblastoma |
| CCSK | NHL, anaplastic large cell lymphoma |
| CCSK | NHL, Burkitt lymphoma (BL) |
| CCSK | Rhabdomyosarcoma |
| CCSK | Soft tissue sarcoma, non-rhabdomyosarcoma |
| CCSK | CNS, other |
| B-ALL | Precursor B-cell lymphoblastic leukemia |
| GNB | Ganglioneuroblastoma |
## Clinical data preprocessing
### TCGA
```r
library(data.table)
library(dplyr)
# load("/home/data2/Projects/Fusion/unclean/TCGA_ALL_clinical.rdata")
#
# TCGA_ALL_clinical |>
# rename(Patient_ID = bcr_patient_barcode,
# Age = age_at_initial_pathologic_diagnosis,
# Sex = gender,
# Race = race,
# )
# [Discrepancy] [Not Applicable] [Not Available]
# [Discrepancy] [Not Available] [Unknown]
# # [Discrepancy] [Not Applicable]
# 29 105
# [Not Available] [Not Evaluated]
# 5140 4
# [Unknown]
library(UCSCXenaShiny)
table(tcga_clinical_fine$Stage_ajcc)
tcga_clinical
tcga_clinical_fine
tcga_genome_instability
tcga_purity
tcga_subtypes
tcga_surv
nrow(tcga_clinical_fine)
nrow(unique(tcga_clinical_fine))
tcga_clinical = unique(tcga_clinical_fine) |>
left_join(tcga_surv, by = c("Sample"="sample")) |>
left_join(tcga_purity, by = c("Sample"="sample"))
tcga_clinical[551, ]$Sample
sum(startsWith(tcga_genome_instability$sample, "TCGA"))
tcga_clinical = tcga_clinical |>
left_join(tcga_genome_instability[startsWith(tcga_genome_instability$sample, "TCGA") & !duplicated(tcga_genome_instability$sample), ], by = c("Sample"="sample")) |>
#left_join(tcga_genome_instability[duplicated(tcga_genome_instability$sample), ], by = c("Sample"="sample")) |>
left_join(tcga_subtypes, by = c("Sample"="sampleID"))
sum(is.na(tcga_clinical$Sample))
sum(duplicated(tcga_clinical$Sample))
tcga_clinical[duplicated(tcga_clinical$Sample), ]$Sample
tcga_clinical.final = tcga_clinical[!duplicated(tcga_clinical$Sample), ] |>
rename(Sample_ID = Sample, Sex = Gender, OS_Time = OS.time, OS_Status = OS, DSS_Time = DSS.time, DSS_Status = DSS, DFS_Time = DFI.time, DFS_Status = DFI, PFS_Time = PFI.time, PFS_Status = PFI) |>
select(-cancer_type) |>
mutate(Sex = ifelse(Sex == "FEMALE", "F", "M"),
Patient_ID = substr(Sample_ID, 1, 12))
sum(is.na(tcga_clinical.final$Sample_ID))
sum(is.na(tcga_clinical.final$Cancer))
sum(duplicated(tcga_clinical.final$Sample_ID))
tcga_clinical.final = tcga_clinical.final |>
select(Patient_ID, Sample_ID, everything()) |>
as.data.table()
tcga_clinical.final
fwrite(tcga_clinical.final, file = "/home/data2/Projects/Fusion/fusiondb/Clininfo/TCGA_info.tsv", sep = "\t")
```
### CPTAC
```r
library(data.table)
# Clinical data from CPTAC paper ------------------------------------------
cli_list = fs::dir_ls("CPTAC_Clinical_meta_data_v1/")
cli = purrr::map(cli_list, fread) |> rbindlist(fill = TRUE, use.names = TRUE)
colnames(cli)
# 问题,这个第 2 行要跳过才行
# 另外这个同时包含 CPTAC-2/3 的样本,但总数少一些
cli2 = purrr::map(cli_list, function(x) {
# 由于列名也不同,这里读两次,一次读 colname,一次读数据
data1 = fread(x)
data2 = fread(x, skip = 2, header = FALSE)
# 更新列名
colnames(data2) = colnames(data1)
data2$Cancer = stringr::str_remove(basename(x), "_meta.txt")
data2 |> as.data.table()
}) |> rbindlist(fill = TRUE, use.names = TRUE)
#colnames(cli2) = colnames(cli)
colnames(cli2)
cli2[Tumor == "Yes" & Normal == "Yes"] # 这个是标记患者是否同时 tumor / normal sample
cli_list2 = fs::dir_ls("meta_data_BCM/")
cli3 = purrr::map(cli_list2, function(x) {
# 由于列名也不同,这里读两次,一次读 colname,一次读数据
data1 = fread(x)
data2 = fread(x, skip = 2, header = FALSE)
# 更新列名
colnames(data2) = colnames(data1)
data2$Cancer = stringr::str_remove(basename(x), "_meta.txt")
data2 |> as.data.table()
}) |> rbindlist(fill = TRUE, use.names = TRUE)
colnames(cli3)
all.equal(cli2, cli3)
all.equal(sort(colnames(cli2)), sort(colnames(cli3)))
cli4 = cli3[, colnames(cli2), with = FALSE]
all.equal(cli2, cli4)
identical(cli2, cli4)
dplyr::setdiff(cli2, cli4) |> View()
dplyr::setdiff(cli4, cli2) |> nrow()
# rbind(cli2[idx == "01OV007"],
# cli4[idx == "01OV007"]) |> View()
# 2 个数据源目录的文件基本没有区别
cli.final = cli2 |>
dplyr::rename(
Patient_ID = idx,
OS_Status = OS_event,
OS_Time = OS_days,
PFS_Status = PFS_event,
PFS_Time = PFS_days
) |>
dplyr::mutate(
Sample_ID = Patient_ID,
Sex = ifelse(Sex == "Female", "F", "M")
) |>
dplyr::select(
Patient_ID, Sample_ID, Cancer, Age, Sex, OS_Time, OS_Status, PFS_Time, PFS_Status, dplyr::everything()
)
# dplyr::select(
# - dplyr::starts_with("CIBERSORT"), - dplyr::starts_with("xCell")
# )
fwrite(cli.final, file = "CPTAC_cli_paper_combined.tsv", sep = "\t")
# Clinical data from GDC --------------------------------------------------
system("
cd /home/data2/Projects/Fusion/unclean/gdc_cli/CPTAC
mkdir CPTAC-3 CPTAC-2
tar zxvf clinical.project-cptac-2.2024-08-07.tar.gz -C CPTAC-2
tar zxvf clinical.project-cptac-3.2024-08-07.tar.gz -C CPTAC-3
")
cptac2 = fread("gdc_cli/CPTAC/CPTAC-2/clinical.tsv")
cptac3 = fread("gdc_cli/CPTAC/CPTAC-3/clinical.tsv")
which(colnames(cptac2) %in% "residual_disease")
which(colnames(cptac3) %in% "residual_disease")
all.equal(cptac2[[119]], cptac2[[192]])
all.equal(cptac3[[119]], cptac3[[192]])
cptac2[[192]] = NULL
cptac3[[192]] = NULL
setdiff(cptac2$case_submitter_id, cli.final$Sample_ID)
setdiff(cptac3$case_submitter_id, cli.final$Sample_ID)
# > setdiff(cptac2$case_submitter_id, cli.final$Sample_ID)
# [1] "01OV049" "26OV010" "100004028" "05BR058" "05BR055" "17OV019" "11BR069" "02OV042" "100004012" "05BR051" "03BR012" "02OV045" "04OV041"
# [14] "05BR052" "05BR031" "1488" "11OV009" "02OV040" "01OV002" "100002921" "22OV001" "13OV004" "100003304" "02OV035" "01OV046" "01OV045"
# [27] "17OV034"
# > setdiff(cptac3$case_submitter_id, cli.final$Sample_ID)
# [1] "C3N-02672" "C3L-01929" "C3N-02682" "C3N-02012" "C3N-02070"
# [6] "C3N-02696" "C3L-02354" "C3N-03026" "C3L-01739" "C3N-02088"
# [11] "C3L-04213" "C3N-03205" "C3L-04081" "C3N-03791" "C3L-03679"
# [16] "C3L-02643" "C3N-04686" "C3L-01558" "C3L-03268" "C3L-01633"
# [21] "C3L-02220" "C3N-02439" "C3N-02028" "C3N-03800" "C3L-04392"
# [26] "C3L-02556" "C3N-02721" "C3L-01672" "C3L-00938" "C3L-02201"
# [31] "C3N-02146" "C3N-02639" "C3N-03788" "C3L-03733" "C3L-04037"
# [36] "C3N-01091" "C3L-02747" "C3N-01879" "C3N-02996" "C3N-02296"
# [41] "C3L-02553" "C3L-03632" "C3N-03755" "GTEX-NPJ7-0011-R10A-SM-HAKXW" "C3L-02746"
length(setdiff(cptac3$case_submitter_id, cli.final$Sample_ID)) # 586
View(cptac2[case_submitter_id %in% setdiff(cptac2$case_submitter_id, cli.final$Sample_ID)])
View(cptac3[case_submitter_id %in% setdiff(cptac3$case_submitter_id, cli.final$Sample_ID)])
data.table::fwrite(
cptac3[case_submitter_id %in% setdiff(cptac3$case_submitter_id, cli.final$Sample_ID)],
file = "CPTAC3_non_included.tsv", sep = "\t"
)
cptac3
# 根据 GDC 已有信息补全 paper 缺少的样本信息 ---------------------------------------------
# 可能标记了 cancer type 的列
# primary_diagnosis site_of_resection_or_biopsy tissue_or_organ_of_origin
cptac = rbind(cptac2, cptac3)[, .(case_submitter_id, primary_diagnosis, site_of_resection_or_biopsy, tissue_or_organ_of_origin)] |> unique()
cptac = dplyr::left_join(cptac, cli.final[, .(Sample_ID, Cancer)], by = c("case_submitter_id"="Sample_ID"))
setdiff(cli.final$Sample_ID, cptac$case_submitter_id)
# 有 29 例不在 GDC 数据中
table(cptac$Cancer, cptac$primary_diagnosis) |> pheatmap::pheatmap()
table(cptac$Cancer, cptac$site_of_resection_or_biopsy) |> pheatmap::pheatmap()
table(cptac$Cancer, cptac$tissue_or_organ_of_origin) |> pheatmap::pheatmap()
table(cptac$Cancer,
paste(
cptac$primary_diagnosis,
cptac$site_of_resection_or_biopsy,
cptac$tissue_or_organ_of_origin, sep = "_"
)) |> pheatmap::pheatmap(show_colnames = FALSE)
# 一个个处理
cat(sub("_meta.txt", "", basename(names(cli_list))))
typelist = sub("_meta.txt", "", basename(names(cli_list)))
# BRCA CCRCC COAD GBM HGSC HNSCC LSCC LUAD PDAC UCEC
for (i in typelist) {
message("check type ", i)
cptac_part = cptac |> dplyr::filter(Cancer == i)
message(" primary_diagnosis")
table(cptac_part$Cancer, cptac_part$primary_diagnosis) |> print()
message(" site_of_resection_or_biopsy")
table(cptac_part$Cancer, cptac_part$site_of_resection_or_biopsy) |> print()
message(" tissue_or_organ_of_origin")
table(cptac_part$Cancer, cptac_part$tissue_or_organ_of_origin) |> print()
}
# BRCA (122): tissue_or_organ_of_origin "Breast, NOS"
# CCRCC (103): primary_diagnosis "Renal cell carcinoma, NOS"
# tissue_or_organ_of_origin "Kidney, NOS"
# COAD (106): tissue_or_organ_of_origin "Colon, NOS", "Rectum, NOS"
# GBM (99): primary_diagnosis "Glioblastoma"
# HGSC (87): primary_diagnosis "Serous adenocarcinoma, NOS" AND
# tissue_or_organ_of_origin Fallopian tube Ovary Peritoneum, NOS
# HNSCC (108): 其他情况 primary_diagnosis "Squamous cell carcinoma, NOS"
# Base of tongue, NOS Cheek mucosa Floor of mouth, NOS Gum, NOS
# HNSCC 1 2 18 3
#
# Head, face or neck, NOS Larynx, NOS Lip, NOS Oropharynx, NOS
# HNSCC 2 47 4 4
#
# Overlapping lesion of lip, oral cavity and pharynx Tongue, NOS Tonsil, NOS
# HNSCC
# LSCC (108): primary_diagnosis "Squamous cell carcinoma, NOS" AND
# tissue_or_organ_of_origin "lung" pattern
# LUAD (110): primary_diagnosis "Adenocarcinoma, NOS" AND
# tissue_or_organ_of_origin "lung" pattern
# PDAC (105): tissue_or_organ_of_origin "pancreas" pattern
# UCEC (95): primary_diagnosis "Endometrioid adenocarcinoma, NOS"
sum(!is.na(cptac$Cancer))
# rbind(cptac2, cptac3)[,192] # 有重复列,需要回到前面处理 (fixed)
# 实际测试和更新
cptac_updated = rbind(cptac2, cptac3) |>
unique() |>
dplyr::mutate(
Cancer = dplyr::case_when(
tissue_or_organ_of_origin %in% "Breast, NOS" ~ "BRCA",
primary_diagnosis %in% "Renal cell carcinoma, NOS" ~ "CCRCC",
tissue_or_organ_of_origin %in% c("Colon, NOS", "Rectum, NOS") ~ "COAD",
grepl("Glioblastoma", primary_diagnosis, ignore.case = TRUE) | grepl("Oligodendroglioma", primary_diagnosis, ignore.case = TRUE) ~ "GBM",
grepl("GTEX", case_submitter_id, ignore.case = TRUE) ~ "GTEX-Brain",
case_submitter_id %in% c("C3L-06912", "C3L-07212") ~ "GBM",
#primary_diagnosis %in% "Glioblastoma" ~ "GBM",
primary_diagnosis %in% "Serous adenocarcinoma, NOS" & tissue_or_organ_of_origin %in% c("Fallopian tube", "Ovary", "Peritoneum, NOS") ~ "HGSC",
primary_diagnosis %in% "Squamous cell carcinoma, NOS" & grepl("lung", tissue_or_organ_of_origin, ignore.case = TRUE) ~ "LSCC",
primary_diagnosis %in% "Adenocarcinoma, NOS" & grepl("lung", tissue_or_organ_of_origin, ignore.case = TRUE) ~ "LUAD",
grepl("pancreas", tissue_or_organ_of_origin, ignore.case = TRUE) ~ "PDAC",
primary_diagnosis %in% "Endometrioid adenocarcinoma, NOS" ~ "UCEC",
TRUE ~ "HNSCC"
)
) |> as.data.table()
for (i in "HNSCC") { # typelist
message("check type ", i)
cptac_part = cptac_updated |> dplyr::filter(Cancer == i)
message(" primary_diagnosis")
table(cptac_part$Cancer, cptac_part$primary_diagnosis) |> print()
message(" site_of_resection_or_biopsy")
table(cptac_part$Cancer, cptac_part$site_of_resection_or_biopsy) |> print()
message(" tissue_or_organ_of_origin")
table(cptac_part$Cancer, cptac_part$tissue_or_organ_of_origin) |> print()
}
table(cptac$Cancer)
table(cptac_updated$Cancer)
cptac_updated |>
dplyr::filter(
primary_diagnosis == "'--" | site_of_resection_or_biopsy == "'--" |
tissue_or_organ_of_origin %in% c("'--", "Unknown")
)
# 1-9 from GTEX-Brain
# C3L-06912 C3L-07212 Gliomas # https://portal.gdc.cancer.gov/cases/e6027623-a5b2-4d82-a9ca-f37c948dd3ed
cptac_updated$case_submitter_id[grepl("GTEX", cptac_updated$case_submitter_id)]
nrow(cptac_updated)
fwrite(cptac_updated, file = "CPTAC_combined_with_cancer_annotated.tsv", sep = "\t")
cptac_unmatched = cptac_updated[! case_submitter_id %in% cli.final$Sample_ID]
colnames(cptac_unmatched)
colnames(cli.final)[1:20]
cptac_unmatched2 = cptac_unmatched |>
dplyr::select(
case_submitter_id, age_at_diagnosis, gender,
days_to_death, vital_status,
dplyr::starts_with("ajcc"),
dplyr::starts_with("days"),
last_known_disease_status, progression_or_recurrence, residual_disease,
tumor_grade, Cancer
)
sum(cptac_unmatched2$days_to_last_follow_up != "'--")
sum(cptac_unmatched2$days_to_death != "'--")
sum(cptac_unmatched2$days_to_recurrence != "'--")
sum(cptac_unmatched2$days_to_last_known_disease_status != "'--")
sum(cptac_unmatched2$progression_or_recurrence != "'--")
sum(!is.na(cli.final$OS_Time))
sum(!is.na(cli.final$PFS_Time))
sum(cli.final$OS_Time >= cli.final$PFS_Time, na.rm = TRUE)
cli.final[cli.final$OS_Time < cli.final$PFS_Time] |> View()
sum(as.integer(cptac_unmatched2$days_to_last_follow_up) >= as.integer(cptac_unmatched2$days_to_last_known_disease_status), na.rm = TRUE)
cptac_unmatched3 = cptac_unmatched2 |>
dplyr::rename(
Sample_ID = case_submitter_id,
Age = age_at_diagnosis,
Sex = gender,
OS_Time = days_to_last_follow_up,
OS_Status = vital_status,
PFS_Time = days_to_last_known_disease_status,
PFS_Status = progression_or_recurrence,
Histologic_Grade = tumor_grade,
Path_Stage_pT = ajcc_pathologic_t,
Path_Stage_pN = ajcc_pathologic_n,
Stage = ajcc_pathologic_stage
) |>
dplyr::select(
Sample_ID, Age, Sex, OS_Time, OS_Status, PFS_Time, PFS_Status,
Path_Stage_pN:Path_Stage_pT,
Histologic_Grade, Cancer
) |>
dplyr::mutate(
Patient_ID = Sample_ID,
Age = as.integer(round(as.integer(Age) / 365)),
Sex = fcase(Sex %in% "female", "F",
Sex %in% "male", "M", default = NA_character_),
OS_Time = as.integer(OS_Time),
OS_Status = fcase(OS_Status %in% "Alive", 0L,
OS_Status %in% "Dead", 1L, default = NA_integer_),
PFS_Time = as.integer(PFS_Time),
PFS_Status = fcase(PFS_Status %in% "no", 0L,
PFS_Status %in% "yes", 1L, default = NA_integer_),
OS_Time = ifelse(OS_Time < 0, NA_integer_, OS_Time),
Path_Stage_pN = fcase(
Path_Stage_pN %in% "N0", "pN0",
Path_Stage_pN %in% c("N1", "N1a"), "pN1",
Path_Stage_pN %in% c("N2", "N2a"), "pN2",
default = NA_character_
),
Path_Stage_pT = fcase(
Path_Stage_pT %in% "T0", "pT0",
Path_Stage_pT %in% c("T1", "T1a", "T1b", "T1c"), "pT1",
Path_Stage_pT %in% c("T2", "T2a", "T2b"), "pT2",
Path_Stage_pT %in% c("T3", "T3a", "T3b"), "pT3",
Path_Stage_pT %in% "T4", "pT4",
default = NA_character_
),
Stage = fcase(
Stage %in% c("Stage I", "Stage IA", "Stage IA1", "Stage IA2", "Stage IA3", "Stage IB"), "Stage I",
Stage %in% c("Stage II", "Stage IIA", "Stage IIB"), "Stage II",
Stage %in% c("Stage III", "Stage IIIA", "Stage IIIB", "Stage IIIC", "Stage IIIC1", "Stage IIIC2"), "Stage III",
Stage %in% c("Stage IV", "Stage IVB"), "Stage IV",
default = NA_character_
),
Histologic_Grade = fcase(
Histologic_Grade %in% "G1", "G1 Well differentiated",
Histologic_Grade %in% "G2", "G2 Moderately differentiated",
Histologic_Grade %in% "G3", "G3 Poorly differentiated",
Histologic_Grade %in% "G4", "G4 Undifferentiated",
default = NA_character_
)
)
cptac_unmatched3
# X: cannot be assessed
table(cptac_unmatched3$Path_Stage_pN)
table(cli.final$Path_Stage_pN)
table(cptac_unmatched3$Path_Stage_pT)
table(cli.final$Path_Stage_pT)
table(cptac_unmatched3$Stage)
table(cli.final$Stage)
table(cptac_unmatched3$Histologic_Grade)
table(cli.final$Histologic_Grade)
# Final output ------------------------------------------------------------
cli.final.2 = dplyr::bind_rows(
cli.final, cptac_unmatched3
) |> as.data.table()
table(cli.final.2$Cancer)
sum(table(cli.final.2$Cancer))
# Race 全部加进去?
cli.final.2 = dplyr::left_join(
cli.final.2, unique(rbind(cptac2, cptac3)[, .(case_submitter_id, race)]),
by = c("Sample_ID"="case_submitter_id")
) |>
dplyr::mutate(
race = ifelse(race %in% c("Unknown", "not reported"), NA_character_,
race)
) |>
as.data.table()
sum(is.na(cli.final.2$race))
fwrite(cli.final.2, file = "/home/data2/Projects/Fusion/fusiondb/Clininfo/CPTAC_info.tsv", sep = "\t")
```
### TARGET
```r
library(data.table)
cli1 = fread("TARGET_donor_allprojects_transfer_to_sample.gz")
cli2 = fread("TARGET_phenotype.gz")
target_cli = cli2 |>
dplyr::select(-`_cohort`) |>
dplyr::rename(Patient_ID = `_PATIENT`,
Sample_ID = sample_id,
disease_code = primary_disease_code,
disease = `_primary_disease`,
sample_type = `_sample_type`) |>
dplyr::full_join(
cli1 |> dplyr::select(
-`_OS_UNIT`, -`_EVENT`, -`_TIME_TO_EVENT`
) |>
dplyr::rename(
Sample_ID = xena_sample,
Sex = `_gender`,
Age = `_age_at_diagnosis`,
OS_Status = `_OS_IND`,
OS_Time = `_OS`
), by = "Sample_ID"
) |>
dplyr::mutate(
Sex = ifelse(Sex == "Male", "M", "F"),
OS_Status = ifelse(OS_Status == "Alive", 0L, 1L)
) |>
dplyr::select(Patient_ID, Sample_ID, Age, Sex, OS_Time, OS_Status, dplyr::everything()) |>
as.data.table()
cli1
target_cli
fwrite(target_cli, file = "/home/data2/Projects/Fusion/fusiondb/Clininfo/TARGET_xena_info.tsv", sep = "\t")
# Using cli from GDC ------------------------------------------------------
system("
cd /home/data2/Projects/Fusion/unclean/gdc_cli/TARGET
mkdir ALL_P1 ALL_P2 ALL_P3 AML CCSK NBL OS RT WT
tar zxvf clinical.project-target-all-p1.2024-08-07.tar.gz -C ALL_P1
tar zxvf clinical.project-target-all-p2.2024-08-07.tar.gz -C ALL_P2
tar zxvf clinical.project-target-all-p3.2024-08-07.tar.gz -C ALL_P3
tar zxvf clinical.project-target-aml.2024-08-07.tar.gz -C AML
tar zxvf clinical.project-target-ccsk.2024-08-07.tar.gz -C CCSK
tar zxvf clinical.project-target-nbl.2024-08-07.tar.gz -C NBL
tar zxvf clinical.project-target-os.2024-08-07.tar.gz -C OS
tar zxvf clinical.project-target-rt.2024-08-07.tar.gz -C RT
tar zxvf clinical.project-target-wt.2024-08-07.tar.gz -C WT
")
gdc_target = rbindlist(
list(
fread("gdc_cli/TARGET/ALL_P1/clinical.tsv"),
fread("gdc_cli/TARGET/ALL_P2/clinical.tsv"),
fread("gdc_cli/TARGET/ALL_P3/clinical.tsv"),
fread("gdc_cli/TARGET/AML/clinical.tsv"),
fread("gdc_cli/TARGET/CCSK/clinical.tsv"),
fread("gdc_cli/TARGET/NBL/clinical.tsv"),
fread("gdc_cli/TARGET/OS/clinical.tsv"),
fread("gdc_cli/TARGET/RT/clinical.tsv"),
fread("gdc_cli/TARGET/WT/clinical.tsv")
),
use.names = TRUE, fill = TRUE
)
table(gdc_target$project_id)
any(duplicated(gdc_target))
gdc_target = gdc_target[!duplicated(gdc_target)]
all.equal(gdc_target[[119]], gdc_target[[192]])
gdc_target[[192]] = NULL
sum(gdc_target$days_to_last_follow_up != "'--")
sum(gdc_target$days_to_death != "'--")
gdc_target2 = gdc_target |>
dplyr::rename(
Sample_ID = case_submitter_id,
Age = age_at_diagnosis,
Sex = gender,
OS_Time = days_to_death,
OS_Status = vital_status
) |>
dplyr::select(
Sample_ID, Age, Sex, OS_Time, OS_Status,
project_id, race, primary_diagnosis
) |>
dplyr::mutate(
Patient_ID = Sample_ID,
Age = as.integer(round(as.integer(Age) / 365)),
Sex = fcase(Sex %in% "female", "F",
Sex %in% "male", "M", default = NA_character_),
OS_Time = as.integer(OS_Time),
OS_Status = fcase(OS_Status %in% "Alive", 0L,
OS_Status %in% "Dead", 1L, default = NA_integer_),
OS_Time = ifelse(OS_Time < 0, NA_integer_, OS_Time)
) |>
as.data.table()
#unique()
# 存在大量 case level 重复
gdc_target2[duplicated(gdc_target2), ]
duplicated(gdc_target[case_submitter_id == "TARGET-20-PANTIV"])
gdc_target[case_submitter_id == "TARGET-20-PANTIV"] |> View() # 存在少量记录的更新?
gdc_target2 = gdc_target2[!duplicated(gdc_target2)]
#table(gdc_target2$PFS_Time)
any(duplicated(gdc_target2))
any(duplicated(gdc_target2$Sample_ID))
gdc_target2[duplicated(gdc_target2$Sample_ID)]
# 会存在不同 ALL 的 Project 中
gdc_dup = gdc_target2[Sample_ID %in% Sample_ID[duplicated(Sample_ID)]]
table(gdc_dup$project_id)
# TARGET-ALL-P1 TARGET-ALL-P2 TARGET-ALL-P3
# 10 57 47
#
# 这种先不处理,如果 ALL 合并分析考虑去重
colnames(gdc_target2)
gdc_target2 = gdc_target2[, c("Patient_ID", "Sample_ID", "Age", "Sex", "race", "primary_diagnosis", "OS_Time", "OS_Status", "project_id")]
fwrite(gdc_target2, file = "/home/data2/Projects/Fusion/fusiondb/Clininfo/TARGET_info.tsv", sep = "\t")
sum(!is.na(gdc_target2$OS_Time))
sum(!is.na(cli1$`_OS`))
nrow(na.omit(unique(target_cli[, .(Patient_ID, OS_Time, OS_Status)])))
nrow(na.omit(unique(gdc_target2[, .(Patient_ID, OS_Time, OS_Status)])))
```