-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
166 lines (145 loc) · 7.13 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
from pytorch_metric_learning.losses import TripletMarginLoss,MarginLoss, MultiSimilarityLoss
from pytorch_metric_learning.distances import BaseDistance
from pytorch_metric_learning.reducers import MeanReducer
from pytorch_metric_learning.utils import loss_and_miner_utils as lmu
from collections import defaultdict
class DPair(BaseDistance):
def __init__(self, **kwargs):
super().__init__(**kwargs)
assert not self.is_inverted
def compute_mat(self, query_emb, ref_emb):
# query_emb.size() = (batch_size , dimension)
dtype, device = query_emb.dtype, query_emb.device
if ref_emb is None:
ref_emb = query_emb
# 返回一个二维网格, rows每一行元素都是相同, cols每一列元素相同
rows, cols = lmu.meshgrid_from_sizes(query_emb, ref_emb, dim=0)
output = torch.zeros(rows.size(), dtype=dtype, device=device)
rows, cols = rows.flatten(), cols.flatten()
# rows.size() = cols.size() = query_emb.size(0) * ref_emb.size(0)
distances = self.pairwise_distance(query_emb[rows], ref_emb[cols])
output[rows, cols] = distances
return output
def pairwise_distance(self, query_emb, ref_emb):
# (batch_size ** 2, dim * 2)
N = query_emb.size(1) // 2
return torch.nn.functional.pairwise_distance(query_emb[:, : N], ref_emb[:, : N]) \
+ torch.nn.functional.pairwise_distance(query_emb[:, N :], ref_emb[:, N:])
def Tripletloss(args):
dist_pair = DPair()
# default -> AvgNonZeroReducer
loss_funcR = TripletMarginLoss(distance=dist_pair, margin = args.vartheta, reducer = MeanReducer())
loss_funcA = TripletMarginLoss(margin = args.delta, reducer = MeanReducer())
return loss_funcR, loss_funcA
#return loss_funcR, AbsPartLoss(args.delta)
class AbsPartLoss(torch.nn.Module):
def __init__(self, margin):
super(AbsPartLoss, self).__init__()
self.loss_funcA = TripletMarginLoss(margin = margin, reducer = MeanReducer())
self.margin = margin
def forward(self, x, Y):
grouped_data = defaultdict(list)
for i, label in enumerate(Y):
grouped_data[label.item()].append(i)
# tensor nonhash
grouped_data = {k: torch.LongTensor(v) for k, v in grouped_data.items()}
a_indices = b_indices = c_indices = torch.LongTensor()
for (a, b, c) in torch.combinations(torch.unique(Y, sorted=True), 3):
grid_a, grid_b, grid_c = torch.meshgrid(
grouped_data[a.item()],
grouped_data[b.item()],
grouped_data[c.item()],
indexing="ij"
)
a_indices = torch.cat([a_indices, grid_a.flatten()])
b_indices = torch.cat([b_indices, grid_b.flatten()])
c_indices = torch.cat([c_indices, grid_c.flatten()])
dist = torch.cdist(x , x)
loss1 = self.loss_funcA(x , Y)
loss2 = torch.mean(F.relu(self.margin - dist[a_indices, c_indices] + dist[a_indices, b_indices]) + F.relu(
self.margin - dist[c_indices, a_indices] + dist[c_indices, b_indices]))
return loss1 + loss2
class ProxyNCALoss(torch.nn.Module):
def __init__(self, num_classes, dim, device):
super(ProxyNCALoss , self).__init__()
self.proxies = torch.nn.Parameter(torch.randn(num_classes, dim))
# torch.nn.init.kaiming_normal_(self.proxies)
torch.nn.init.xavier_uniform_(self.proxies)
self.classes = torch.arange(num_classes)
def forward(self, x, y : torch.Tensor):
device = x.device
self.proxies.data = self.proxies.data.to(device)
self.classes = self.classes.to(device)
P = F.normalize(self.proxies, p = 2, dim = -1)
D = -torch.cdist(x , P)
prob = F.softmax(D, dim = 1)
exp = torch.sum(prob * (y.unsqueeze(1) == self.classes) , dim = 1)
loss = torch.mean(-torch.log(exp) / (1-exp))
return loss
class ProxyRankingLoss(torch.nn.Module):
def __init__(self, num_classes, dim, margin = 0.1):
super(ProxyRankingLoss, self).__init__()
self.proxies = torch.nn.Parameter(torch.randn(num_classes, dim))
self.classes = torch.arange(num_classes)
self.margin = margin
torch.nn.init.xavier_uniform_(self.proxies)
# Cross-Entropy , Unimodal
def forward(self, x, y):
device = x.device
self.proxies.data = self.proxies.data.to(device)
self.classes = self.classes.to(device)
P = F.normalize(self.proxies, p=2, dim=-1)
D = torch.cdist(x, P)
sim = -torch.log(1 + D ** 2)
# 高斯核函数
prob = F.softmax(sim, dim=1)
mask_e = y.unsqueeze(1) == self.classes
exp = torch.sum(prob * mask_e, dim=1) # broadcast
loss1 = torch.mean(-torch.log(exp) / (1 - exp))
#loss1 = torch.mean(-torch.log(exp))
diff = D[:, : -1] - D[:, 1 : ]
#diff = prob[:, : -1] - prob[:, 1 : ]
mask = torch.where(y.unsqueeze(1) <= self.classes, 1, -1)
#loss2 = torch.mean(F.relu(self.margin - mask[:, : -1] * diff))
loss2 = torch.mean(F.relu(0 - mask[:, : -1] * diff))
#loss2 = torch.mean(F.softplus(self.margin - mask[:, : -1] * diff))
#loss2 = torch.mean(torch.log(1 + torch.sum(torch.exp(self.margin - mask[:, : -1] * diff), dim = 1)))
#loss2 = torch.mean(F.softplus(torch.logsumexp(self.margin - mask[:, : -1] * diff, dim = 1)))
return loss1 + loss2
#return loss2
class SemicircularProxiesLearner(nn.Module):
def __init__(self, num_ranks, dim):
super(SemicircularProxiesLearner, self).__init__()
self.num_ranks = num_ranks
self.rank_ids = nn.Parameter(torch.arange(num_ranks)[:, None].float(), requires_grad=False)
self.v0 = nn.Parameter(torch.empty((1, dim)), requires_grad=True)
self.v1 = nn.Parameter(torch.empty((1, dim)), requires_grad=True)
nn.init.xavier_normal_(self.v0)
nn.init.xavier_normal_(self.v1)
def forward(self):
theta = self.rank_ids * np.pi / (self.num_ranks - 1)
gamma = torch.cosine_similarity(self.v0, self.v1).arccos()
norm_v0 = self.v0 / torch.linalg.norm(self.v0, dim=-1)
norm_v1 = self.v1 / torch.linalg.norm(self.v1, dim=-1)
proxies = (gamma - theta).sin() / gamma.sin() * norm_v0 + theta.sin() / gamma.sin() * norm_v1
return proxies
class HardCplLoss(nn.Module):
@staticmethod
def forward(X, gt, proxies):
# [batch_size , dim] , [N, dim]
assign_metric = torch.cosine_similarity(X[: , None , :] , proxies[None , : , :], dim = -1)
proxies_metric = torch.cosine_similarity(proxies , proxies, dim = -1)
selected_proxies_metric = proxies_metric[gt, :].detach() # [B, C]
loss = F.kl_div(F.log_softmax(assign_metric, dim=-1), F.softmax(selected_proxies_metric, dim=-1), reduction='batchmean')
return loss
if __name__ == "__main__":
embedding = torch.randn(10, 64)
num_classes = 10
labels = torch.randint(0 , num_classes, (10,))
criterion = ProxyNCALoss(num_classes, 64)
criterion(embedding , labels)
print(criterion.get_proxies())