-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathengine.py
187 lines (159 loc) · 6.1 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os, time, math
import torch
import datetime
from utils.io import save_checkpoint
from utils.misc import SmoothedValue
from utils.dist import (
is_distributed,
is_primary,
barrier,
all_reduce_average
)
class Logger:
def __init__(self, args):
exp_name = os.path.split(args.checkpoint_dir)[-1]
self.logger = open(os.path.join(args.checkpoint_dir, f'{exp_name}-logger.log'), 'a')
def __call__(self, info_str):
self.logger.write(info_str + "\n")
self.logger.flush()
print(info_str)
def compute_learning_rate(args, curr_epoch_normalized):
assert curr_epoch_normalized <= 1.0 and curr_epoch_normalized >= 0.0
if (
curr_epoch_normalized <= (args.warm_lr_epochs / args.max_epoch)
and args.warm_lr_epochs > 0
):
# Linear Warmup
curr_lr = args.warm_lr + curr_epoch_normalized * args.max_epoch * (
(args.base_lr - args.warm_lr) / args.warm_lr_epochs
)
else:
# Cosine Learning Rate Schedule
curr_lr = args.final_lr + 0.5 * (args.base_lr - args.final_lr) * (
1 + math.cos(math.pi * curr_epoch_normalized)
)
return curr_lr
def adjust_learning_rate(args, optimizer, curr_epoch):
curr_lr = compute_learning_rate(args, curr_epoch)
for param_group in optimizer.param_groups:
if args.pretrained_params_lr is not None and \
param_group["lr"] == args.pretrained_params_lr:
continue
param_group["lr"] = curr_lr
return curr_lr
def do_train(
args,
model,
model_no_ddp,
optimizer,
dataset_config,
dataloaders,
best_val_metrics=dict()
):
logout = Logger(args)
if is_primary():
logout(f"call with args: {args}")
# logout(f"{model}")
curr_iter = args.start_epoch * len(dataloaders['train'])
max_iters = args.max_epoch * len(dataloaders['train'])
net_device = next(model.parameters()).device
time_delta = SmoothedValue(window_size=10)
loss_avg = SmoothedValue(window_size=10)
model.train()
barrier()
for curr_epoch in range(args.start_epoch, args.max_epoch):
if is_distributed():
dataloaders["train_sampler"].set_epoch(curr_epoch)
for batch_idx, batch_data_label in enumerate(dataloaders['train']):
curr_time = time.time()
curr_iter = curr_epoch * len(dataloaders['train']) + batch_idx
curr_lr = adjust_learning_rate(args, optimizer, curr_iter / max_iters)
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(net_device)
outputs = model(batch_data_label, is_eval=False)
loss = outputs['loss']
loss = all_reduce_average(loss)
if not math.isfinite(loss.item()):
logout("Loss is {}, stopping training".format(loss.item()))
logout("Loss in not finite. Training will be stopped.")
# sys.exit(1)
loss = torch.tensor(0.0).to(loss.device)
optimizer.zero_grad()
optimizer.step()
loss_avg.update(loss.item())
continue
# Forward pass
optimizer.zero_grad()
loss.backward()
if args.clip_gradient > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_gradient)
optimizer.step()
time_delta.update(time.time() - curr_time)
loss_avg.update(loss.item())
# logging
if is_primary() and curr_iter % args.log_every == 0:
mem_mb = torch.cuda.max_memory_allocated() / (1024 ** 2)
eta_seconds = (max_iters - curr_iter) * time_delta.avg
eta_str = str(datetime.timedelta(seconds=int(eta_seconds)))
logout(
f"Epoch [{curr_epoch}/{args.max_epoch}]; "
f"Iter [{curr_iter}/{max_iters}]; "
f"Loss {loss_avg.avg:0.2f}; "
f"LR {curr_lr:0.2e}; Iter time {time_delta.avg:0.2f}; "
f"ETA {eta_str}; Mem {mem_mb:0.2f}MB"
)
barrier()
# eval
if (curr_iter + 1) % args.eval_every_iteration == 0:
eval_metrics = dataloaders['test'].dataset.eval_func(
args,
curr_epoch,
model,
dataset_config,
dataloaders['test'],
logout,
curr_train_iter=curr_iter
)
model.train()
if not best_val_metrics or (
best_val_metrics[args.criterion] < eval_metrics[args.criterion]
):
best_val_metrics = eval_metrics
filename = "checkpoint_best.pth"
save_checkpoint(
args.checkpoint_dir,
model_no_ddp,
optimizer,
curr_epoch,
args,
best_val_metrics,
filename="checkpoint_best.pth",
)
if is_primary():
logout(
f"Epoch [{curr_epoch}/{args.max_epoch}] "
f"saved current best val checkpoint at {filename}; "
f"{args.criterion} {eval_metrics[args.criterion]}"
)
# end of an iteration
# end of an epoch
save_checkpoint(
args.checkpoint_dir,
model_no_ddp,
optimizer,
curr_epoch,
args,
best_val_metrics,
filename="checkpoint.pth",
)
# end of training
eval_metrics = dataloaders['test'].dataset.eval_func(
args,
curr_epoch,
model,
dataset_config,
dataloaders['test'],
logout,
curr_train_iter=-1
)
return