-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathrun_demo_paste.py
394 lines (317 loc) · 14.8 KB
/
run_demo_paste.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import os
import cv2
import lmdb
import math
import argparse
import numpy as np
from io import BytesIO
from PIL import Image
import torch
import torch.nn as nn
from networks.generator import Generator
import argparse
import numpy as np
import torchvision
import os
from PIL import Image
from pathlib import Path
from tqdm import tqdm
import collections
import seg_model_2
from torch.nn import functional as F
from torchvision import transforms
from morphology import dilation
from torchvision.transforms.functional import to_tensor
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from GFPGAN.gfpgan import GFPGANer
def load_image(filename, size):
img = Image.open(filename).convert('RGB')
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0
def load_image1(filename, size):
img = filename.convert('RGB')
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0
def img_preprocessing(img_path, size):
img = load_image1(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm
def vid_preprocessing(vid_path):
vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0)
fps = vid_dict[2]['video_fps']
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
return vid_norm, fps
def save_video(vid_target_recon, save_path, fps):
vid = vid_target_recon.permute(0, 2, 3, 4, 1)
vid = vid.clamp(-1, 1).cpu()
vid = ((vid - vid.min()) / (vid.max() - vid.min()) * 255).type('torch.ByteTensor')
torchvision.io.write_video(save_path, vid[0], fps=fps)
def FillHole(mask):
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
len_contour = len(contours)
contour_list = []
for i in range(len_contour):
drawing = np.zeros_like(mask, np.uint8) # create a black image
img_contour = cv2.drawContours(drawing, contours, i, (255, 255, 255), -1)
contour_list.append(img_contour)
out = sum(contour_list)
return out
def logical_or_reduce(*tensors):
return torch.stack(tensors, dim=0).any(dim=0)
def logical_and_reduce(*tensors):
return torch.stack(tensors, dim=0).all(dim=0)
def create_masks(border_pixels, mask, inner_dilation=0, outer_dilation=0, whole_image_border=True):
image_size = mask.shape[2]
grid = torch.cartesian_prod(torch.arange(image_size), torch.arange(image_size)).view(image_size, image_size,
2).cuda()
image_border_mask = logical_or_reduce(
grid[:, :, 0] < border_pixels,
grid[:, :, 1] < border_pixels,
grid[:, :, 0] >= image_size - border_pixels,
grid[:, :, 1] >= image_size - border_pixels
)[None, None].expand_as(mask)
temp = mask
if inner_dilation != 0:
temp = dilation(temp, torch.ones(2 * inner_dilation + 1, 2 * inner_dilation + 1, device=mask.device),
engine='convolution')
content = temp.clone().squeeze(0)
content = content.squeeze(0)*255
content = content.cpu().numpy()
content = np.array(content,np.uint8)
temp = FillHole(content)
temp = temp/255
temp = torch.from_numpy(temp)
temp = temp.unsqueeze(0)
temp = temp.unsqueeze(0)
temp = temp.type(torch.FloatTensor).cuda()
mask = temp.clone()
border_mask = torch.min(image_border_mask, temp)
full_mask = dilation(temp, torch.ones(2 * outer_dilation + 1, 2 * outer_dilation + 1, device=mask.device),
engine='convolution')
if whole_image_border:
border_mask_2 = 1 - temp
else:
border_mask_2 = full_mask - temp
border_mask = torch.maximum(border_mask, border_mask_2)
border_mask = border_mask.clip(0, 1)
content_mask = (mask - border_mask).clip(0, 1)
return content_mask, border_mask, full_mask
def calc_masks(inversion, segmentation_model, border_pixels, inner_mask_dilation, outer_mask_dilation,
whole_image_border):
background_classes = [0, 18, 16]
inversion_resized = torch.cat([F.interpolate(inversion, (512, 512), mode='nearest')])
inversion_normalized = transforms.functional.normalize(inversion_resized.clip(-1, 1).add(1).div(2),
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
segmentation = segmentation_model(inversion_normalized)[0].argmax(dim=1, keepdim=True)
is_foreground = logical_and_reduce(*[segmentation != cls for cls in background_classes])
foreground_mask = is_foreground.float()
content_mask, border_mask, full_mask = create_masks(border_pixels // 2, foreground_mask, inner_mask_dilation // 2,
outer_mask_dilation // 2, whole_image_border)
size = 256
content_mask = F.interpolate(content_mask, (size, size), mode='bilinear', align_corners=True)
border_mask = F.interpolate(border_mask, (size, size), mode='bilinear', align_corners=True)
full_mask = F.interpolate(full_mask, (size, size), mode='bilinear', align_corners=True)
return content_mask, border_mask, full_mask
def tensor2pil(tensor: torch.Tensor) -> Image.Image:
x = tensor.squeeze(0).permute(1, 2, 0).add(1).mul(255).div(2).squeeze()
x = x.detach().cpu().numpy()
x = np.rint(x).clip(0, 255).astype(np.uint8)
return Image.fromarray(x)
def tensor2pil_mask(tensor: torch.Tensor) -> Image.Image:
x = tensor.squeeze(0).permute(1, 2, 0).mul(255).squeeze()
x = x.detach().cpu().numpy()
x = np.rint(x).clip(0, 255).astype(np.uint8)
return Image.fromarray(x)
def paste_image_mask( quad, image, dst_image, mask, radius=0, sigma=0.0):
image_masked = image.copy().convert('RGBA')
pasted_image = dst_image.copy().convert('RGBA')
ori = dst_image.copy()
if radius != 0:
mask_np = np.array(mask)
kernel_size = (radius * 2 + 1, radius * 2 + 1)
kernel = np.ones(kernel_size)
eroded = cv2.erode(mask_np, kernel, borderType=cv2.BORDER_CONSTANT, borderValue=0)
blurred_mask = cv2.GaussianBlur(eroded, kernel_size, sigmaX=sigma)
blurred_mask = Image.fromarray(blurred_mask)
mask = blurred_mask.copy()
image_masked.putalpha(mask)
else:
image_masked.putalpha(mask)
x1, y1, x2, y2 = int(quad.split(' ')[0]), int(quad.split(' ')[1]), int(quad.split(' ')[2]), int(quad.split(' ')[3])
pasted_image = np.asarray(pasted_image)
other = pasted_image[y1:y2, x1:x2]
other = Image.fromarray(np.uint8(other))
other = other.resize((256,256),Image.ANTIALIAS)
mask = (1-to_tensor(mask)[None]).mul(2).sub(1).cuda()
mask = tensor2pil(mask)
other.putalpha(mask)
other.alpha_composite(image_masked)
other = other.resize((x2 - x1,y2 - y1),Image.ANTIALIAS)
other = other.convert("RGB")
ori = np.array(ori)
ori.flags.writeable = True
ori[y1:y2, x1:x2] = other
return ori
def video2imgs(videoPath):
cap = cv2.VideoCapture(videoPath)
judge = cap.isOpened()
fps = cap.get(cv2.CAP_PROP_FPS)
frames = 1
count = 1
img = []
while judge:
flag, frame = cap.read()
if not flag:
break
else:
img.append(frame)
cap.release()
return img
def GFP(img,restorer):
input_img = img
_, _, restored_img = restorer.enhance(
input_img, has_aligned=False, only_center_face=True, paste_back=True)
return cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
class Demo(nn.Module):
def __init__(self, args):
super(Demo, self).__init__()
self.args = args
model_path = args.model_path
print('==> loading model')
self.gen = Generator(args.size, args.latent_dim_style, args.latent_dim_motion, args.channel_multiplier).cuda()
weight = torch.load(model_path, map_location=lambda storage, loc: storage)['gen']
self.gen.load_state_dict(weight)
self.gen.eval()
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True),
])
seg_model_path = './checkpoints/79999_iter.pth'
self.segmentation_model = seg_model_2.BiSeNet(19).eval().cuda().requires_grad_(False)
self.segmentation_model.load_state_dict(torch.load(seg_model_path))
model_en = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
bg_upsampler = RealESRGANer(
scale=2,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
model=model_en,
tile=400,
tile_pad=10,
pre_pad=0,
half=True) # need to set False in CPU mode
model_name = 'GFPGANv1.3'
model_path = os.path.join('./checkpoints', model_name + '.pth')
if not os.path.isfile(model_path):
model_path = os.path.join('realesrgan/weights', model_name + '.pth')
if not os.path.isfile(model_path):
raise ValueError(f'Model {model_name} does not exist.')
self.restorer = GFPGANer(
model_path=model_path,
upscale=1,
arch='clean',
channel_multiplier=2,
bg_upsampler=bg_upsampler)
print('==> loading data')
self.save_path = args.output_folder
os.makedirs(self.save_path, exist_ok=True)
s_img = video2imgs(args.s_path)
d_img = video2imgs(args.d_path)
s = []
for i in s_img:
img = Image.fromarray(cv2.cvtColor(i,cv2.COLOR_BGR2RGB))
s.append(img_preprocessing(img,256).cuda())
d = []
for i in d_img:
img = Image.fromarray(cv2.cvtColor(i,cv2.COLOR_BGR2RGB))
d.append(img_preprocessing(img,256).cuda())
pa_box = args.box_path
with open(pa_box, 'r') as f:
hw = f.readline().strip()
four = f.readline()
self.s_img = s
self.d_img = d
self.full_path = args.full_path
self.four = four
self.run()
def run(self):
output_dir = self.save_path
crop_vi = os.path.join(output_dir, 'edit.mp4')
out_edit = cv2.VideoWriter(crop_vi, cv2.VideoWriter_fourcc(*'mp4v'), 25, (256,256))
crop_vi = os.path.join(output_dir, 's.mp4')
out_s = cv2.VideoWriter(crop_vi, cv2.VideoWriter_fourcc(*'mp4v'), 25, (256,256))
crop_vi = os.path.join(output_dir, 'd.mp4')
out_d = cv2.VideoWriter(crop_vi, cv2.VideoWriter_fourcc(*'mp4v'), 25, (256,256))
hw = Image.open(os.path.join(self.full_path,'0.jpg')).size
crop_vi = os.path.join(output_dir, 'paste.mp4')
out_edit_paste = cv2.VideoWriter(crop_vi, cv2.VideoWriter_fourcc(*'mp4v'), 25, hw)
print('==> running')
with torch.no_grad():
l = min(len(self.d_img),len(self.s_img))
for i in tqdm(range(l)):
img_target = self.d_img[i]
img_source = self.s_img[i]
full_img = Image.open(os.path.join(self.full_path,str(i)+'.jpg'))
output_dict = self.gen(img_source, img_target, 'exp')
fake = output_dict
fake = fake.cpu().clamp(-1, 1)
video_numpy = fake[:,:3,:,:].clone().cpu().float().detach().numpy()
video_numpy = (np.transpose(video_numpy, (0, 2, 3, 1)) + 1) / 2.0 * 255.0
video_numpy = video_numpy.astype(np.uint8)[0]
video_numpy = cv2.cvtColor(video_numpy, cv2.COLOR_RGB2BGR)
out_edit.write(video_numpy)
if self.args.EN:
fake = GFP(video_numpy,self.restorer)
fake = self.transform(fake).unsqueeze(0)
# print(fake.shape)
# print(torch.min(fake))
# exit(0)
border_pixels = 50
inner_mask_dilation = 0
outer_mask_dilation = 50
whole_image_border = False
content_mask, border_mask, full_mask = calc_masks(fake.clone().cuda(), self.segmentation_model, border_pixels,
inner_mask_dilation, outer_mask_dilation,
whole_image_border)
orig_img = full_img
full_mask_image = tensor2pil(full_mask.mul(2).sub(1))
oup_paste = paste_image_mask(self.four, tensor2pil(fake.clone()), orig_img.copy(), full_mask_image, radius=50)
oup_paste = cv2.cvtColor(oup_paste, cv2.COLOR_RGB2BGR)
out_edit_paste.write(oup_paste)
video_numpy = img_source[:,:3,:,:].clone().cpu().float().detach().numpy()
video_numpy = (np.transpose(video_numpy, (0, 2, 3, 1)) + 1) / 2.0 * 255.0
video_numpy = video_numpy.astype(np.uint8)[0]
video_numpy = cv2.cvtColor(video_numpy, cv2.COLOR_RGB2BGR)
out_s.write(video_numpy)
video_numpy = img_target[:,:3,:,:].clone().cpu().float().detach().numpy()
video_numpy = (np.transpose(video_numpy, (0, 2, 3, 1)) + 1) / 2.0 * 255.0
video_numpy = video_numpy.astype(np.uint8)[0]
video_numpy = cv2.cvtColor(video_numpy, cv2.COLOR_RGB2BGR)
out_d.write(video_numpy)
out_edit.release()
out_s.release()
out_d.release()
out_edit_paste.release()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--size", type=int, default=256)
parser.add_argument("--s_path", type=str, default='./data/crop_video/video6.mp4')
parser.add_argument("--full_path", type=str, default='./data/full_img/video6/')
parser.add_argument("--d_path", type=str, default='./data/d.mp4')
parser.add_argument("--box_path", type=str, default='./data/crop_video6.txt')
parser.add_argument("--channel_multiplier", type=int, default=1)
parser.add_argument("--model", type=str, default='')
parser.add_argument("--latent_dim_style", type=int, default=512)
parser.add_argument("--latent_dim_motion", type=int, default=20)
parser.add_argument("--face", type=str, default='exp')
parser.add_argument("--model_path", type=str, default='')
parser.add_argument("--output_folder", type=str, default='')
parser.add_argument("--EN", action="store_true", help="can enhance the result")
args = parser.parse_args()
# demo
demo = Demo(args)