-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
233 lines (200 loc) · 9.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import copy
import os
import time
from collections import deque
import numpy as np
import torch
import common.utils as utils
import common.data_augs as data_augs
from common.storage import RolloutStorage
from baselines import logger
from procgen import ProcgenEnv
from baselines.common.vec_env import (
VecExtractDictObs,
VecMonitor,
VecNormalize
)
from common.envs import VecPyTorchProcgen, TransposeImageProcgen
from common.arguments import parser
from test import evaluate
aug_to_func = {
'crop': data_augs.Crop,
'cutoutcolor': data_augs.CutoutColor,
'flip': data_augs.Flip,
'rotate': data_augs.Rotate,
'cutout': data_augs.Cutout,
'grayscale': data_augs.Grayscale,
'colorjitter': data_augs.ColorJitter,
'random-conv': data_augs.RandomConv,
}
def train(args):
# hw settings
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.set_num_threads(1)
device = torch.device(f"cuda:{args.gpu_device}" if args.cuda else "cpu")
# environment
venv = ProcgenEnv(num_envs=args.num_processes, env_name=args.env_name, \
num_levels=args.num_levels, start_level=args.start_level, \
distribution_mode=args.distribution_mode)
venv = VecExtractDictObs(venv, "rgb")
venv = VecMonitor(venv=venv, filename=None, keep_buf=100)
venv = VecNormalize(venv=venv, ob=False)
envs = VecPyTorchProcgen(venv, device)
# agent
obs_shape = envs.observation_space.shape
batch_size = int(args.num_processes * args.num_steps / args.num_mini_batch)
if args.algo == "ppo":
from common.policy import PpoPolicy as Policy
from agents.ppo import Ppo as Agent
policy_kwargs={
'recurrent': False, 'hidden_size': args.hidden_size, "encoding": False}
agent_kwargs = {}
elif args.algo == "sar":
from common.policy import SarPolicy as Policy
from agents.sar import Sar as Agent
policy_kwargs={
'recurrent': False, 'hidden_size': args.hidden_size, \
"n_envs": args.num_processes, "encoding": False}
agent_kwargs = {
"aug_func": aug_to_func[args.aug_type](batch_size=batch_size, \
gpu_device=device) if args.aug_type != "identity" else data_augs.Identity(),
"adv_coef": args.adv_coef, "val_sim_coef": args.val_sim_coef}
actor_critic = Policy(
obs_shape,
envs.action_space.n,
policy_kwargs).to(device)
agent = Agent(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
args.lr,
args.eps,
args.max_grad_norm,
**agent_kwargs)
# Settings
log_dir = os.path.expanduser(args.log_dir)
utils.cleanup_log_dir(log_dir)
if "aug_func" in agent_kwargs.keys():
if args.algo == "sar":
log_file = f'-{args.env_name}-{args.algo}({args.aug_type})(adv{args.adv_coef})(val{args.val_sim_coef})-seed{args.seed}'
else:
log_file = f'-{args.env_name}-{args.algo}({args.aug_type})-seed{args.seed}'
else:
log_file = f'-{args.env_name}-{args.algo}-seed{args.seed}'
checkpoint_path = os.path.join(args.save_dir, "agent" + log_file + ".pt")
if os.path.exists(checkpoint_path) and args.preempt:
checkpoint = torch.load(checkpoint_path)
agent.actor_critic.load_state_dict(checkpoint['model_state_dict'])
if args.algo == "sar":
agent.optimizer_act.load_state_dict(checkpoint['optimizer_act_state_dict'])
agent.optimizer_adv.load_state_dict(checkpoint['optimizer_adv_state_dict'])
else:
agent.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
init_epoch = checkpoint['epoch'] + 1
logger.configure(dir=args.log_dir, format_strs=['csv', 'stdout'], log_suffix=log_file + "-e%s" % init_epoch)
else:
init_epoch = 0
logger.configure(dir=args.log_dir, format_strs=['csv', 'stdout'], log_suffix=log_file)
# storage
rollouts = RolloutStorage(args.num_steps, args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size,
aug_type=args.aug_type,
algo=args.algo, num_level=args.num_levels)
## Main training loop ##
obs = envs.reset()
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards = deque(maxlen=10)
num_updates = int(args.num_env_steps) // args.num_steps // args.num_processes
for j in range(init_epoch, num_updates):
actor_critic.train()
for step in range(args.num_steps):
# take actions
with torch.no_grad():
if args.algo == "sar":
value, action, action_log_prob, logits, recurrent_hidden_states, \
_, _ = actor_critic.act(
rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
else:
value, action, action_log_prob, logits, \
recurrent_hidden_states = actor_critic.act(
rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
obs, reward, done, infos = envs.step(action)
for info in infos:
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
# store to rollouts
# if done then clean the history of observations.
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
rollouts.insert(obs, recurrent_hidden_states, action, \
action_log_prob, value, reward, masks, bad_masks)
with torch.no_grad():
obs_id = rollouts.obs[-1]
next_value = actor_critic.get_value(
obs_id, rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
rollouts.compute_returns(next_value, args.gamma, args.gae_lambda)
# optimize the policy
if args.algo == "sar":
value_loss, action_loss, dist_entropy, kl_loss = agent.update(rollouts)
else:
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
# log the outputs
total_num_steps = (j + 1) * args.num_processes * args.num_steps
if j % args.log_interval == 0 and len(episode_rewards) > 1:
total_num_steps = (j + 1) * args.num_processes * args.num_steps
print("\nUpdate {}, step {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}"
.format(j, total_num_steps,
len(episode_rewards), np.mean(episode_rewards),
np.median(episode_rewards), dist_entropy, value_loss,
action_loss))
logger.logkv("train/nupdates", j)
logger.logkv("train/total_num_steps", total_num_steps)
logger.logkv("losses/dist_entropy", dist_entropy)
logger.logkv("losses/value_loss", value_loss)
logger.logkv("losses/action_loss", action_loss)
if args.algo == "sar":
logger.logkv("losses/kl_loss", kl_loss)
logger.logkv("train/mean_episode_reward", np.mean(episode_rewards))
logger.logkv("train/median_episode_reward", np.median(episode_rewards))
### Eval on the Full Distribution of Levels ###
eval_episode_rewards = evaluate(args, actor_critic, device)
logger.logkv("test/mean_episode_reward", np.mean(eval_episode_rewards))
logger.logkv("test/median_episode_reward", np.median(eval_episode_rewards))
logger.dumpkvs()
# save model
if (j > 0 and j % args.save_interval == 0
or j == num_updates - 1) and args.save_dir != "":
try:
os.makedirs(args.save_dir)
except OSError:
pass
if args.algo == "sar":
torch.save({
'epoch': j,
'model_state_dict': agent.actor_critic.state_dict(),
'optimizer_act_state_dict': agent.optimizer_act.state_dict(),
'optimizer_adv_state_dict': agent.optimizer_adv.state_dict(),
}, os.path.join(args.save_dir, "agent" + log_file + ".pt"))
else:
torch.save({
'epoch': j,
'model_state_dict': agent.actor_critic.state_dict(),
'optimizer_state_dict': agent.optimizer.state_dict(),
}, os.path.join(args.save_dir, "agent" + log_file + ".pt"))
if __name__ == "__main__":
args = parser.parse_args()
train(args)