-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
159 lines (124 loc) · 4.82 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import yaml
import argparse
import numpy as np
import pandas as pd
from common import set_seed
from common import get_arguments
from common import get_logger
from common import get_session
from callback import create_callbacks
from callback import OptionalLearningRateSchedule
from model.anynet import AnyNet
from dataloader import set_dataset
from dataloader import dataloader
import tensorflow as tf
def set_cfg(args, logger):
path = os.path.join(args.result_path, args.dataset, args.model_name, str(args.stamp))
initial_epoch = 0
if os.path.isfile(os.path.join(path, 'history/epoch.csv')):
df = pd.read_csv(os.path.join(path, 'history/epoch.csv'))
if len(df) > 0:
if len(df['epoch'].values) >= args.epochs:
logger.info('{} Training already finished!!!'.format(args.stamp))
return args, -1
else:
ckpt_list = sorted([d for d in os.listdir(os.path.join(path, 'checkpoint')) if 'h5' in d],
key=lambda x: int(x.split('_')[0]))
print(ckpt_list)
args.snapshot = os.path.join(path, 'checkpoint/{}'.format(ckpt_list[-1]))
initial_epoch = int(ckpt_list[-1].split('_')[0])
desc = yaml.full_load(open(os.path.join(path, 'model_desc.yml'), 'r'))
for k, v in desc.items():
if k in ['checkpoint', 'history', 'snapshot', 'gpus', 'src_path', 'data_path', 'result_path']:
continue
setattr(args, k, v)
return args, initial_epoch
def create_model(args, logger):
if 'anynet' in args.model_name.lower():
model = AnyNet(args, name='anynet')
elif 'regnet' in args.model_name.lower():
pass
else:
raise ValueError()
if args.snapshot:
model.load_weights(args.snapshot)
logger.info('Load model weights at {}'.format(args.snapshot))
return model
def main():
set_seed()
args = get_arguments()
assert args.model_name is not None, 'model_name must be set.'
logger = get_logger("MyLogger")
args, initial_epoch = set_cfg(args, logger)
if initial_epoch == -1:
# training was already finished!
return
get_session(args)
for k, v in vars(args).items():
logger.info("{} : {}".format(k, v))
##########################
# Strategy
##########################
# strategy = tf.distribute.MirroredStrategy()
strategy = tf.distribute.experimental.CentralStorageStrategy()
num_workers = strategy.num_replicas_in_sync
assert args.batch_size % num_workers == 0
logger.info('{} : {}'.format(strategy.__class__.__name__, num_workers))
logger.info("GLOBAL BATCH SIZE : {}".format(args.batch_size))
##########################
# Generator
##########################
trainset, valset = set_dataset(args)
train_generator = dataloader(args, trainset, 'train')
val_generator = dataloader(args, valset, 'val', shuffle=False)
steps_per_epoch = args.steps or len(trainset) // args.batch_size
validation_steps = len(valset) // args.batch_size
logger.info("TOTAL STEPS OF DATASET FOR TRAINING")
logger.info("========== trainset ==========")
logger.info(" --> {}".format(len(trainset)))
logger.info(" --> {}".format(steps_per_epoch))
logger.info("=========== valset ===========")
logger.info(" --> {}".format(len(valset)))
logger.info(" --> {}".format(validation_steps))
##########################
# Model
##########################
with strategy.scope():
model = create_model(args, logger)
if args.summary:
from tensorflow.keras.utils import plot_model
plot_model(model, to_file=os.path.join(args.src_path, 'model.png'), show_shapes=True)
model.summary(line_length=130)
return
# optimizer
scheduler = OptionalLearningRateSchedule(args, steps_per_epoch, initial_epoch)
optimizer = tf.keras.optimizers.SGD(scheduler, momentum=.9, decay=.00005)
model.compile(
optimizer=optimizer,
loss=tf.keras.losses.categorical_crossentropy,
metrics=['acc']
)
##########################
# Callbacks
##########################
callbacks = create_callbacks(
args,
path=os.path.join(args.result_path, args.dataset, args.model_name, str(args.stamp)))
logger.info("Build callbacks!")
##########################
# Train
##########################
model.fit(
x=train_generator,
epochs=args.epochs,
callbacks=callbacks,
validation_data=val_generator,
steps_per_epoch=steps_per_epoch,
validation_steps=validation_steps,
initial_epoch=initial_epoch,
verbose=1,
)
if __name__ == "__main__":
main()